15-213

“The course that gives CMU its Zip!”

Code Optimization |
Nov. 25, 2008

Topics

m Machine-Independent Optimizations
® Basic optimizations
® Optimization blockers

class25.ppt

Harsh Reality

There’'s more to performance than asymptotic complexity

Constant factors matter too!

m Easily see 10:1 performance range depending on how code is
written

m Must optimize at multiple levels:
® algorithm, data representations, procedures, and loops

Must understand system to optimize performance
m How programs are compiled and executed
m How to measure program performance and identify bottlenecks

m How to improve performance without destroying code
modularity and generality

-2 - 15-213, F'08

Optimizing Compilers

Provide efficient mapping of program to machine
m register allocation
m code selection and ordering (scheduling)

m dead code elimination
m eliminating minor inefficiencies

Don’t (usually) improve asymptotic efficiency
m Up to programmer to select best overall algorithm

m big-O savings are (often) more important than constant factors
® but constant factors also matter

Have difficulty overcoming “optimization blockers”
m potential memory aliasing
m potential procedure side-effects

-3- 15-213, F'08

Limitations of Optimizing Compilers

Operate under fundamental constraint

m Must not cause any change in program behavior under any
possible condition

m Often prevents it from making optimizations when would only affect
behavior under pathological conditions.

Behavior that may be obvious to the programmer can be
obfuscated by languages and coding styles

m e.g., Dataranges may be more limited than variable types suggest

Most analysis is performed only within procedures
m Whole-program analysis is too expensive in most cases

Most analysis is based only on static information
m Compiler has difficulty anticipating run-time inputs

When in doubt, the compiler must be conservative

-4 — 15-213, F'08

Machine-Independent Optimizations

Optimizations that you or the compiler should do
regardless of processor / compiler

Code Motion

m Reduce frequency with which computation performed
e If it will always produce same result
® Especially moving code out of loop
void set _row(double *a, double *b,

long 1, long n)

{
long j; long j;

for (G = 0; j < n; j++) Int ni = n*i;
a[n*i+j] = b[il; for G =05 J < n; j++)
a[ni+j] = b[i];

-5-— 15-213, F'08

Compiler-Generated Code Motion

void set_row(double *a, double *Db, -
long i, long n) long J;

long ni1 = n*i;

{

double *rowp = a+ni;
for G =0; j < n; j+)
“rowp++ = b[j];

long j;
for (g = O

Ahere are the FP operations?

%r8d, %r8d

%rcx, %r8

L7

%rcx, %rax

%rdx, %rax

(%rdi ,%rax,8), %rdx

0
T >= goto done

n*i outside of inner loop
rowp = A + n*1*8
loop:

%r8

%rax, (%rdx)
$8, %rdx
%rcx, %r8
.L5

J+t

*rowp =

rowp++

Jj:on

1T < goot loop
done:

return

#
#
#
#
#
#
#
(%rsi,%r8,8), Wrax # t = b[]j]
#
#
#
#
#
#
#

Reduction in Strength

m Replace costly operation with simpler one

m Shift, add instead of multiply or divide
16*x --> X << 4

e Utility machine dependent
® Depends on cost of multiply or divide instruction

» On Pentium IV, integer multiply requires 10 CPU cycles
» On Core 2, requires 3 cycles

m Recognize sequence of products

15-213, F'08

Share Common Subexpressions

m Reuse portions of expressions

m Compilers often not very sophisticated in exploiting
arithmetic properties

up =
down
left

sum =

/* Sum neighbors of

val[(i-1)*n
val[(1+1)*n
val[i1*n

right = val[i*n
up + down + left + right;

i
+
+
+

+

-]

J
i

j_
J+11;

*/
1:
1:

1];

int inj

up =
down
left

= 1*n +
val[inj
val[inj
val[inj

right = val[inj

sum =

up + down

nj;
nl;
1];
1];

left + right;

3 multiplications: i*n, (i-1)*n, (i+1)*n

1 multiplication: i*n

leaq
leaq
imulq
imulq
imulq
addq
addq
addq

1(%rsi1), %rax #
-1(%rsi), %r8 #

%rcx, %rsi
%rcx, %rax
%rcx, %r8
%rdx, %rsi
%rdx, %rax
%rdx, %r8

HHHHFHH

i+1

-1

1*n
(i+1)*n
(i-1)*n
1*Nn+]j
(i+1)*n+j
(i-1)*n+j

imulq
addq
movq
subq
leaq

%rcx, %rsi
%rdx, %rsi
%Brsi, %rax #
Wrcx, %rax #

#
#

1*n
1*n+]j
1*Nn+]j
I*n+j-n

(%rsi,%rcx), %rcx # 1*n+j+n

15-213, F'08

Optimization Blocker #1.
Procedure Calls

Procedure to Convert String to Lower Case

void lower(char *s)
{
int 1;
for (1 = 0; 1 < strlen(s); 1++)
iIT (s[i] >= "A" && s[i1] <= "Z7)
s[i] = (CCA" - "a%);

m Extracted from 213 lab submissions, Fall, 1998

15-213, F'08

Lower Case Conversion Performance

m Time quadruples when double string length
m Quadratic performance

1000
100 -
10

1 _

0.1 -
0.01
0.001 -
0.0001

CPU Seconds

8k
16k

1k [
2k [
4k [

256 I
512 [l
256k

String Length

15-213, F'08

Convert Loop To Goto Form

void lower(char *s)
{
int 1 = 0;
iIT (1 >= strlen(s))
goto done;
loop:
It (s[1] >= "A" && s[i1] <= "Z%)
s[i] -= (A" - "a%);

1++;
iIT (1 < strlen(s))
goto loop;
done:

}

m strlen executed every iteration

11— 15-213, F'08

Calling Strlen

/* My version of strlen */
size_t strlen(const char *s)
{
size t length = O;
while (s = "\0") {
S++
length++;
by
return length;
}

Strlen performance
m Only way to determine length of string is to scan its entire length,

looking for null character.

Overall performance, string of length N

- 12 —

m N calls to strlen
m Require times N, N-1, N-2, ..., 1
m Overall O(N2) performance

15-213, F'08

— 13—

Improving Performance

void lower(char *s)

{ - -
int 1;
int len = strilen(s);
for (1 = 0; 1 < len; 1++)

s[i] -= (A" - "a%);

if (s[i] >= "A" && s[i] <= "Z°)

m Move call to strilen outside of loop

m Since result does not change from one iteration to another

m Form of code motion

15-213, F'08

Lower Case Conversion Performance

m Time doubles when double string length
m Linear performance of lower2

10000

100 M lowerl W lower?2

1f

0.01 -
0.000001 L | | | | | | | | | |
© N X X X X X x X X
LO — —i [Q\| < 00 (@) AN < 00)
AN Lo —i ep) O CF\II

CPU Seconds

256K

String Length

- 14 - 15-213, F'08

Optimization Blocker: Procedure Calls

Why couldn’t compiler move strilen out of inner loop?

m Procedure may have side effects
e Alters global state each time called

m Function may not return same value for given arguments
® Depends on other parts of global state
@ Procedure lower could interact with strilen
Warning:
m Compiler treats procedure call as a black box
m \Weak optimizations near them int lencnt = O:

Remedies: size _t strlen(const char *s)

{
size_t length = 0O;
m Do your own code motion while (*s 1= "\0") {

s++; length++;

m Use of inline functions

}

lencnt += length;
return length;

~ 15— ¥

Memory Matters

/* Sum rows i1s of n X n matrix a
and store 1In vector b */
void sum_rowsl(double *a, double *b, long n) {

sum_rowsl inner loop

.L53:
addsd (%rcx), %xmmO # FP add

addq $8, %rcx

decq %rax
movsd %xmmO, (%rsi,%r8,8) # FP store

jne -L53

m Code updates b[1] on every iteration

m Why couldn’t compiler optimize this away?

16— 15-213, F'08

Memory Aliasing

/* Sum rows i1s of n X n matrix a
and store in vector b */
void sum_rowsl(double *a, double *b, long n) {
long 1, j;
for (i = 0; 1 <n; 1++t) {

b[i] = O;
for J = 0; J < n; j++)
b[i] += ali*n + J];

Value of B:

double A[9] =
{o, 1, 2,
4, 8, 16},
32, 64, 128%;

i = 0: [3, 8, 16]

i = 1: [3, 22, 16]

double B[3] = A+3;

i = 2: [3, 22, 224]

sum_rowsl(A, B, 3);

m Code updates b[1] on every iteration

m Must consider possibility that these updates will affect
-17- program behavior 15-213, F08

Removing Aliasing

/* Sum rows 1s of n X n matrix a
and store In vector b */
void sum_rows2(double *a, double *b, long n) {
long 1, j;
for (i = 0; 1 <n; 1++t) {
double val = 0;
for (J = 0; J < n; jJ+t+)
val += a[1*n + j];
b[1] = val;

sum_rows2 inner loop
.L66:

addsd (%rcx), %xmmO0 # FP Add
addq $8, %rcx

decq %rax

jne .L66

m NO need to store intermediate results

—18 —

15-213, F'08

Unaliased Version

/* Sum rows i1s of n X n matrix a
and store in vector b */
void sum_rows2(double *a, double *b, long n) {
long 1, j;
for (i = 0; 1 <n; 1++t) {
double val = 0O;

for (J = 0; J < n; jJ+t+)
val += a[1*n + j];
b[1] = val;

Value of B:

double A[9] =
{o, 1, 2,
4, 8, 16},
32, 64, 128%;

i = 0: [3, 8, 16]

i = 1: [3, 27, 16]

double B[3] = A+3;

i = 2: [3, 27, 224]

sum_rowsl(A, B, 3);

m Aliasing still creates interference

_19- 15-213, F'08

Optimization Blocker: Memory Aliasing

Aliasing
m Two different memory references specify single location

m Easy to have happen in C
® Since allowed to do address arithmetic
® Direct access to storage structures

m Get in habit of introducing local variables
® Accumulating within loops
® Your way of telling compiler not to check for aliasing

— 20— 15-213, F'08

Machine-Independent Opt. Summary

Code Motion
m Compilers are good at this for simple loop/array structures
m Don’t do well in the presence of procedure calls and memory
aliasing
Reduction in Strength

m Shift, add instead of multiply or divide
® Compilers are (generally) good at this
® Exact trade-offs machine-dependent

m Keep data in registers (local variables) rather than memory
® Compilers are not good at this, since concerned with aliasing

® Compilers do know how to allocate registers (no need for
register declaration)

Share Common Subexpressions
m Compilers have limited algebraic reasoning capabilities

o1 15-213, F08

	Code Optimization I�Nov. 25, 2008
	Harsh Reality
	Optimizing Compilers
	Limitations of Optimizing Compilers
	Machine-Independent Optimizations
	Compiler-Generated Code Motion
	Reduction in Strength
	Share Common Subexpressions
	Optimization Blocker #1: Procedure Calls
	Lower Case Conversion Performance
	Convert Loop To Goto Form
	Calling Strlen
	Improving Performance
	Lower Case Conversion Performance
	Optimization Blocker: Procedure Calls
	Memory Matters
	Memory Aliasing
	Removing Aliasing
	Unaliased Version
	Optimization Blocker: Memory Aliasing
	Machine-Independent Opt. Summary

