15-213 "The course that gives CMU its Zip!"

Disk-based Storage Oct. 23, 2008

Topics

- Storage technologies and trends
- Locality of reference
- Caching in the memory hierarchy

Announcements

Exam next Thursday

style like exam #1: in class, open book/notes, no electronics

Disk-based storage in computers

- Memory/storage hierarchy
 - Combining many technologies to balance costs/benefits
 - Recall the memory hierarchy and virtual memory lectures

Memory/storage hierarchies

- Balancing performance with cost
 - Small memories are fast but expensive
 - Large memories are slow but cheap
- Exploit locality to get the best of both worlds
 - Iocality = re-use/nearness of accesses
 - allows most accesses to use small, fast memory

An Example Memory Hierarchy

Page Faults

A *page fault* is caused by a reference to a VM word that is not in physical (main) memory

 Example: An instruction references a word contained in VP 3, a miss that triggers a page fault exception

Disk-based storage in computers

- Memory/storage hierarchy
 - Combining many technologies to balance costs/benefits
 - Recall the memory hierarchy and virtual memory lectures

Persistence

- Storing data for lengthy periods of time
 - DRAM/SRAM is "volatile": contents lost if power lost
 - Disks are "non-volatile": contents survive power outages
- To be useful, it must also be possible to find it again later
 - this brings in many interesting data organization, consistency, and management issues
 - take 18-746/15-746 Storage Systems ©
 - we'll talk a bit about file systems next

What's Inside A Disk Drive?

Disk Electronics

Quantum Viking (circa 1997)

6 Chips Just like a small 6 Chips computer – processor, memory, network iface

- R/W Channel
- uProcessor 32-bit, 25 MHz Power Array
- 2 MB DRAM
- Control ASIC SCSI, servo, ECC

Motor/Spindle

- Connect to disk
- Control processor
- Cache memory
- Control ASIC
- Connect to motor

Disk "Geometry"

Disks contain platters, each with two surfaces

Each surface organized in concentric rings called tracks

Each track consists of sectors separated by gaps

Disk Geometry (Muliple-Platter View)

Aligned tracks form a cylinder

Disk Structure

Disk Operation (Single-Platter View)

Disk Operation (Multi-Platter View)

Disk Structure - top view of single platter

Surface organized into tracks

Tracks divided into sectors

Head in position above a track

Rotation is counter-clockwise

About to read blue sector

After **BLUE** read

After reading blue sector

After **BLUE** read

Red request scheduled next

Disk Access – Seek

Seek to red's track

Disk Access – Rotational Latency

Wait for red sector to rotate around

Complete read of red

Disk Access – Service Time Components

Disk Access Time

Average time to access a specific sector approximated by:

Taccess = Tavg seek + Tavg rotation + Tavg transfer

Seek time (Tavg seek)

- Time to position heads over cylinder containing target sector
- Typical Tavg seek = 3-5 ms

Rotational latency (Tavg rotation)

- Time waiting for first bit of target sector to pass under r/w head
- Tavg rotation = 1/2 x 1/RPMs x 60 sec/1 min
 - e.g., 3ms for 10,000 RPM disk

Transfer time (Tavg transfer)

25

- Time to read the bits in the target sector
- Tavg transfer = 1/RPM x 1/(avg # sectors/track) x 60 secs/1 min
 - e.g., 0.006ms for 10,000 RPM disk with 1,000 sectors/track
- given 512-byte sectors, ~85 MB/s data transfer rate 15-213, F'08

Disk Access Time Example

Given:

- Rotational rate = 7,200 RPM
- Average seek time = 5 ms
- Avg # sectors/track = 1000

Derived average time to access random sector:

- Tavg rotation = 1/2 x (60 secs/7200 RPM) x 1000 ms/sec = 4 ms
- Tavg transfer = 60/7200 RPM x 1/400 secs/track x 1000 ms/sec = 0.008 ms
- Taccess = 5 ms + 4 ms + 0.008 ms = 9.008 ms
 - Time to second sector: 0.008 ms

Important points:

- Access time dominated by seek time and rotational latency
- First bit in a sector is the most expensive, the rest are free
- SRAM access time is about 4 ns/doubleword, DRAM about 60 ns
 - ~100,000 times longer to access a word on disk than in DRAM

Disk storage as array of blocks

OS's view of storage device (as exposed by SCSI or IDE/ATA protocols)

- Common "logical block" size: 512 bytes
- Number of blocks: device capacity / block size
- Common OS-to-storage requests defined by few fields
 - R/W, block #, # of blocks, memory source/dest

Page Faults

In device, "blocks" mapped to physical store

Physical sectors of a singlesurface disk

LBN-to-physical for a singlesurface disk

15-213, F'08

Disk Capacity

Capacity: maximum number of bits that can be stored

Vendors express capacity in units of gigabytes (GB), where
1 GB = 10⁹ Bytes (Lawsuit pending! Claims deceptive advertising)

Capacity is determined by these technology factors:

- Recording density (bits/in): number of bits that can be squeezed into a 1 inch linear segment of a track
- Track density (tracks/in): number of tracks that can be squeezed into a 1 inch radial segment
- Areal density (bits/in²): product of recording and track density

Computing Disk Capacity

Capacity = (# bytes/sector) x (avg. # sectors/track) x (# tracks/surface) x (# surfaces/platter) x (# platters/disk)

Example:

- 512 bytes/sector
- 1000 sectors/track (on average)
- 20,000 tracks/surface
- 2 surfaces/platter
- 5 platters/disk

Capacity = 512 x 1000 x 80000 x 2 x 5 = 409,600,000,000 = 409.6 GB

Looking back at the hardware

Connecting I/O devices: the I/O Bus

Reading from disk (1)

Reading from disk (2)

CPU chip

15-213, F'08

Reading from disk (3)

^{15-213,} F'08