15-213

“The course that gives CMU its Zip!”

Concurrent Programming
November 13, 2008

Topics
m Limitations of iterative servers
m Process-based concurrent servers
m Threads-based concurrent servers
m Event-based concurrent servers

lecture-22.ppt

Echo Server Operation
Client Server

socket

socket

open_listenfd

open_clientfd
listen

i

Connection
v v
Session A = N B request from
])
15-213, F'08

Page 1

Concurrent Programming is Hard!

® The human mind tends to be sequential
The notion of time is often misleading

Thinking about all possible sequences of events in a computer
system is at least error prone and frequently impossible

® Classical problem classes of concurrent programs:
m Races: outcome depends on arbitrary scheduling decisions
elsewhere in the system
e Example: who gets the last seat on the airplane?
m Deadlock: improper resource allocation prevents forward progress
o Example: traffic gridlock
m Livelock / Starvation / Fairness: external events and/or system
scheduling decisions can prevent sub-task progress
e Example: people always jump in front of you in line

® Many aspects of concurrent programming are beyond the
scope of 15-213
—-2- 15-213, F'08

Iterative Servers

Iterative servers process one request at a time

client 1 server client 2
call connect call connect
ret connect . B
call write ret accept
read
ret write
close
close
call accept |-
.| ret connect
ret accept call write
read -
ret write
close
close
_4- 15-213, F08

Fundamental Flaw of Iterative Servers

client 1

call connect
ret connect [«
call fgets

User goes
out to lunch

Client 1 blocks
waiting for user
to type in data

Server blocks
waiting for
data from
Client 1

server
call accept

ret accept
call read

Solution: use concurrent servers instead

m Concurrent servers use multiple concurrent flows to serve
multiple clients at the same time

client 2

call connect

Client 2 blocks
waiting to complete
its connection
request until after
lunch!

15-213, F08

Three Basic Mechanisms for
Creating Concurrent Flows

1. Processes

m Kernel automatically interleaves multiple logical flows

m Each flow has its own private address space

2. Threads

m Kernel automatically interleaves multiple logical flows
m Each flow shares the same address space

3. 1/0 multiplexing with select()
m Programmer manually interleaves multiple logical flows

m All flows share the same address space
m Popular for high-performance server designs

15-213, F08

Page 2

Concurrent Servers (approach #1):
Multiple Processes

Concurrent servers handle multiple requests concurrently

client 1 server client 2
call connect [call accept . call connect
ret connect [e
- ret accept
call fgets
Chlldl/ fork
call read call accept
User goes] ret connect
out to lunch ‘ot accept call fgets
Client 1 fork child 2 write
blocks call read
waiting for
user to type
in data
end read
close
15-213, F'08

Review: Sequential Echo Server

int main(int argc, char **argv)
{
int listenfd, connfd;
int port = atoi(argv[1l]);
struct sockaddr_in clientaddr;
int clientlen = sizeof(clientaddr);

listenfd = Open_listenfd(port);

while (1) {
connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);
echo(connfd);
Close(connfd);

3
exit(0);

m Accept a connection request
m Handle echo requests until client terminates

15-213, F08

Process-Based Concurrent Server

int main(int argc, char **argv)

{

Fork separate process for each
client

Does not allow any
communication between
different client handlers

int listenfd, connfd;

int port = atoi(argv[1l]);

struct sockaddr_in clientaddr;
int clientlen=sizeof(clientaddr);

Signal (SIGCHLD, sigchld_handler);
listenfd = Open_listenfd(port);
while (1) {
connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
if (ForkQ) == 0) {
Close(listenfd); /* Child closes its listening socket */

echo(connfd); /* Child services client */
Close(connfd); /* Child closes connection with client */
exit(0); /* Child exits */

3

Close(connfd); /* Parent closes connected socket (important!) */

15-213, F08

Process Execution Model

Connection Requests

Listening
Server
Process
Client 1 Client 2
Client 1data [geryer Server [Client 2 data
T "|Process Process[—

—~11—

m Each client handled by independent process
m No shared state between them

m When child created, each have copies of listenfd and connfd
® Parent must close connfd, child must close listenfd

15-213,F08

Page 3

Process-Based Concurrent Server
(cont)

void sigchld_handler(int sig)
while (waitpid(-1, 0, WNOHANG) > 0)

return;

m Reap all zombie children

_10- 15-213, F'08

Implementation Must-dos With
Process-Based Designs

Listening server process must reap zombie children
m to avoid fatal memory leak

Listening server process must close its copy of connfd
m Kernel keeps reference for each socket/open file
m After fork, refcnt(connfd) = 2
m Connection will not be closed until refcnt(connfd) ==

12 15-213, F'08

Pros and Cons of Process-Based
Designs

+ Handle multiple connections concurrently

+ Clean sharing model
m descriptors (no)
m file tables (yes)
m global variables (no)

+ Simple and straightforward
- Additional overhead for process control

- Nontrivial to share data between processes
m Requires IPC (interprocess communication) mechanisms

= FIFO’s (named pipes), System V shared memory and semaphores

13- 15-213, F'08

Traditional View of a Process

Process = process context + code, data, and stack

Process context Code, data, and stack

stack

Program context: SP
Data registers
Condition codes
Stack pointer (SP)
Program counter (PC)

Kernel context:

VM structures
Descriptor table
brk pointer 0

shared libraries

brk -
run-time heap

read/write data
PC —| read-only code/data

—15— 15-213,F08

Page 4

Approach #2: Multiple Threads

Very similar to approach #1 (multiple processes)

—14-

but, with threads instead of processes

15-213, F08

Alternate View of a Process

Process = thread + code, data, and kernel context

—~16—

Thread (main thread)

Thread context:
Data registers
Condition codes
Stack pointer (SP)
Program counter (PC)

brk

Code and Data

shared libraries

PC —

run-time heap

read/write data

read-only code/data

Kernel context:
VM structures
Descriptor table

brk pointer

15-213, F08

A Process With Multiple Threads

Multiple threads can be associated with a process
m Each thread has its own logical control flow

m Each thread shares the same code, data, and kernel context
® Share common virtual address space (inc. stacks)

m Each thread has its own thread id (TID)
Thread 1 (main thread)

stack 1

Shared code and data Thread 2 (peer thread)

shared libraries

run-time heap
read/write data

Thread 1 context:
Data registers
Condition codes

read-only code/data

Thread 2 context:
Data registers
Condition codes

SP1 0 SP2
PC1 Kernel context: PC2
VM structures

Descriptor table

brk pointer
_17- 15-213, F'08

Concurrent Thread Execution

Two threads run concurrently (are concurrent) if their
logical flows overlap in time

Otherwise, they are sequential

Thread A Thread B Thread C
Examples:
m Concurrent: A& B, A&C | | I ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
m Sequential: B & C |
Time | I 777777
_19- 15-213, F'08

Page 5

Logical View of Threads

Threads associated with process form a pool of peers
m Unlike processes which form a tree hierarchy

Threads associated with process foo Process hierarchy

0 P o 9

OIOXO),
© 0 ©

&)

»

1

1

1

1

1

1

1 shared code, data
: and kernel context
1

1

1

1

1

1

15-213, F08

Threads vs. Processes

How threads and processes are similar
m Each has its own logical control flow
m Each can run concurrently with others
m Each is context switched

How threads and processes are different
m Threads share code and data, processes (typically) do not
m Threads are somewhat less expensive than processes
® Process control (creating and reaping) is twice as expensive as
thread control
® Linux/Pentium Il numbers:
» ~20K cycles to create and reap a process
» ~10K cycles (or less) to create and reap a thread

_20- 15-213, F'08

Posix Threads (Pthreads) Interface

Pthreads: Standard interface for ~60 functions that
manipulate threads from C programs
m Creating and reaping threads
® pthread_create()
e pthread_join()
m Determining your thread ID
e pthread_self()
m Terminating threads
e pthread_cancel ()
e pthread_exit()
e exit() [terminates all threads] , RET [terminates current thread]

m Synchronizing access to shared variables
e pthread_mutex_init
® pthread_mutex_[un]lock
® pthread_cond_init
e pthread_cond_[timed]wait
21— 15-213, F'08

Execution of Threaded“hello, world”

call Pthread_create()

Pthread_create() retums | e, peer thread

call Pthread_join() { e
printf(Q)
main thread waits for return NULL;
peer thread to terminate " (peer thread

............................. terminates)
Pthread_join() returns fa=""

exitQ)
terminates

main thread and
any peer threads

—23- 15-213,F08

Page 6

The Pthreads “hello, world" Program

/*
* hello.c - Pthreads "hello, world" program
*
/
#include "csapp.h" Thread attributes
-1 (usually NULL)
void *thread(void *vargp);
int mainQ) { Thread arguments
pthread_t tid; 1 (void *p)
Pthread_create(&tid, NULL, thread, NULL);
Pthread_join(tid, NULL);
exit(0);
} || return value
(void **p)
/* thread routine */
void *thread(void *vargp) {
printf(*"Hello, world!\n");
return NULL;
3
-22— 15-213, F08

Thread-Based Concurrent Echo
Server

int main(int argc, char **argv)

{

int port = atoi(argv[1l]);

struct sockaddr_in clientaddr;
int clientlen=sizeof(clientaddr);
pthread_t tid;

int listenfd = Open_listenfd(port);

while (1) {
int *connfdp = Malloc(sizeof(int));
*connfdp = Accept(listenfd, (SA *) &clientaddr, &clientlen);
Pthread_create(&tid, NULL, echo_thread, connfdp);

3

m Spawn new thread for each client
m Pass it copy of connection file descriptor
m Note use of Malloc()!

e Without corresponding Free() 15-213. F'08

‘(I;;I’gﬁgd-ased Concurrent Server Process Execution Model

/* thread routine */ Conned
void *echo_thread(void *vargp)
{
int connfd = *((int *)vargp);
Pthread_detach(pthread_self()); Client
Free(vargp); .
echo(connfd); Client 1datg | geryer
Close(connfd); Thread
return NULL;
}
m Run thread in “detached” mode m Multiple threads within single process
e Runs independently of other threads m Some state between them
® File descriptors (in this example; usually more)

® Reaped when it terminates
m Free storage allocated to hold clientfd
® “Producer-Consumer” model
15-213, F'08 —26- 15-213, F'08

— 25—

Potential Form of Unintended Sharing Issues With Thread-Based Servers

whille i) = . . . Must run “detached” to avoid memory leak
int connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen); L . . o
Pthread_create(&tid, NULL, echo_thread, (void *) &connfd); m At any point in time, a thread is either joinable or detached
3 m Joinable thread can be reaped and killed by other threads
¥ ® must be reaped (with pthread_join) to free memory resources
m Detached thread cannot be reaped or killed by other threads

Main thread stack ® resources are automatically reaped on termination
m Default state is joinable

connfd
- e use pthread_detach(pthread_self()) to make detached

connfd = connfd,
Peer. stack Must be careful to avoid unintended sharing.
m For example, what happens if we pass the address of connfd

to the thread routine?
® Pthread_create(&tid, NULL, thread, (void

*)&connfd);
All functions called by a thread must be thread-safe
m (next lecture)

)]connfd =*vargp

connfd = connfd,

‘l . Peer, stack
TP [@vargp |

Why would both copies of vargp point to same location? 15-213, F08

—28— 15-213, F08

27—

Page 7

Pros and Cons of Thread-Based
Designs

+ Easy to share data structures between threads
m e.g., logging information, file cache

+ Threads are more efficient than processes

--- Unintentional sharing can introduce subtle and hard-
to-reproduce errors!

m The ease with which data can be shared is both the greatest
strength and the greatest weakness of threads

m (next lecture)

29 15-213, F'08

Page 8

Approaches to Concurrency

Processes
m Hard to share resources: Easy to avoid unintended sharing
m High overhead in adding/removing clients

Threads
m Easy to share resources: Perhaps too easy
m Medium overhead
m Not much control over scheduling policies
[]

Difficult to debug
® Event orderings not repeatable

I/0O Multiplexing
m Tedious and low level
m Total control over scheduling
m Very low overhead
m Cannot create as fine grained a level of concurrency

_30- 15-213, F'08

