
Concurrent Programming
November 13, 2008

Concurrent Programming
November 13, 2008

TopicsTopics
Limitations of iterative servers
Process-based concurrent servers
Threads-based concurrent servers
Event-based concurrent servers

15-213
“The course that gives CMU its Zip!”

lecture-22.ppt

– 2 – 15-213, F’08

Concurrent Programming is Hard!Concurrent Programming is Hard!
The human mind tends to be sequentialThe human mind tends to be sequential

The notion of time is often misleadingThe notion of time is often misleading

Thinking about all possible sequences of events in a computer Thinking about all possible sequences of events in a computer
system is at least error prone and frequently impossiblesystem is at least error prone and frequently impossible

Classical problem classes of concurrent programs:Classical problem classes of concurrent programs:
Races: outcome depends on arbitrary scheduling decisions
elsewhere in the system

Example: who gets the last seat on the airplane?
Deadlock: improper resource allocation prevents forward progress

Example: traffic gridlock
Livelock / Starvation / Fairness: external events and/or system
scheduling decisions can prevent sub-task progress

Example: people always jump in front of you in line

Many aspects of concurrent programming are beyond the Many aspects of concurrent programming are beyond the
scope of 15scope of 15--213213

– 3 – 15-213, F’08

Client /
Server
Session

Echo Server OperationEcho Server Operation
Client Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

– 4 – 15-213, F’08

Iterative ServersIterative Servers
Iterative servers process one request at a timeIterative servers process one request at a time

client 1 server client 2

call connect call accept
ret connect

ret accept

call connect

call write
read

ret write
close

close
call accept

ret connect

call write

ret write

close

read

ret accept

close

– 5 – 15-213, F’08

Fundamental Flaw of Iterative ServersFundamental Flaw of Iterative Servers

Solution: use Solution: use concurrent servers concurrent servers insteadinstead
Concurrent servers use multiple concurrent flows to serve
multiple clients at the same time

client 1 server client 2

call connect
call accept

call read

ret connect
ret accept

call connect
call fgets

User goes
out to lunch

Client 1 blocks
waiting for user
to type in data

Client 2 blocks
waiting to complete
its connection
request until after
lunch!

Server blocks
waiting for
data from
Client 1

– 6 – 15-213, F’08

Concurrent Servers (approach #1):
Multiple Processes

Concurrent Servers (approach #1):
Multiple Processes

Concurrent servers handle multiple requests concurrentlyConcurrent servers handle multiple requests concurrently
client 1 server client 2

call connect
call accept

call read

ret connect
ret accept

call connect

call fgets
forkchild 1

User goes
out to lunch

Client 1
blocks
waiting for
user to type
in data

call accept
ret connect

ret accept call fgets

writefork

call
read

child 2

write

call read

end read
close

close

...

– 7 – 15-213, F’08

Three Basic Mechanisms for
Creating Concurrent Flows
Three Basic Mechanisms for
Creating Concurrent Flows

1. Processes1. Processes
Kernel automatically interleaves multiple logical flows
Each flow has its own private address space

2. Threads2. Threads
Kernel automatically interleaves multiple logical flows
Each flow shares the same address space

3. I/O multiplexing with 3. I/O multiplexing with select()select()
Programmer manually interleaves multiple logical flows
All flows share the same address space
Popular for high-performance server designs

– 8 – 15-213, F’08

Review: Sequential Echo ServerReview: Sequential Echo Server
int main(int argc, char **argv)
{

int listenfd, connfd;
int port = atoi(argv[1]);
struct sockaddr_in clientaddr;
int clientlen = sizeof(clientaddr);

listenfd = Open_listenfd(port);
while (1) {

connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);
echo(connfd);
Close(connfd);

}
exit(0);

}

Accept a connection request
Handle echo requests until client terminates

– 9 – 15-213, F’08

int main(int argc, char **argv)
{

int listenfd, connfd;
int port = atoi(argv[1]);
struct sockaddr_in clientaddr;
int clientlen=sizeof(clientaddr);

Signal(SIGCHLD, sigchld_handler);
listenfd = Open_listenfd(port);
while (1) {

connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
if (Fork() == 0) {

Close(listenfd); /* Child closes its listening socket */
echo(connfd); /* Child services client */
Close(connfd); /* Child closes connection with client */
exit(0); /* Child exits */

}
Close(connfd); /* Parent closes connected socket (important!) */

}
}

Process-Based Concurrent ServerProcess-Based Concurrent Server

Fork separate process for each
client

Does not allow any
communication between
different client handlers

– 10 – 15-213, F’08

Process-Based Concurrent Server
(cont)
Process-Based Concurrent Server
(cont)

void sigchld_handler(int sig)
{

while (waitpid(-1, 0, WNOHANG) > 0)
;

return;
}

Reap all zombie children

– 11 – 15-213, F’08

Process Execution ModelProcess Execution Model

Each client handled by independent process
No shared state between them
When child created, each have copies of listenfd and connfd

Parent must close connfd, child must close listenfd

Client 1
Server

Process

Client 2
Server

Process

Listening
Server

Process

Connection Requests

Client 1 data Client 2 data

– 12 – 15-213, F’08

Implementation Must-dos With
Process-Based Designs
Implementation Must-dos With
Process-Based Designs
Listening server process must reap zombie childrenListening server process must reap zombie children

to avoid fatal memory leak

Listening server process must Listening server process must closeclose its copy of its copy of connfdconnfd
Kernel keeps reference for each socket/open file
After fork, refcnt(connfd) = 2
Connection will not be closed until refcnt(connfd) == 0

– 13 – 15-213, F’08

Pros and Cons of Process-Based
Designs
Pros and Cons of Process-Based
Designs

+ Handle multiple connections concurrently+ Handle multiple connections concurrently
+ Clean sharing model+ Clean sharing model

descriptors (no)
file tables (yes)
global variables (no)

+ Simple and straightforward+ Simple and straightforward
-- Additional overhead for process controlAdditional overhead for process control
-- Nontrivial to share data between processesNontrivial to share data between processes

Requires IPC (interprocess communication) mechanisms
FIFO’s (named pipes), System V shared memory and semaphores

– 14 – 15-213, F’08

Approach #2: Multiple ThreadsApproach #2: Multiple Threads

Very similar to approach #1 (multiple processes)Very similar to approach #1 (multiple processes)
but, with threads instead of processes

– 15 – 15-213, F’08

Traditional View of a ProcessTraditional View of a Process
Process = process context + code, data, and stackProcess = process context + code, data, and stack

shared libraries

run-time heap

0

read/write data

Program context:
Data registers
Condition codes
Stack pointer (SP)
Program counter (PC)

Kernel context:
VM structures
Descriptor table
brk pointer

Code, data, and stack

read-only code/data

stack
SP

PC

brk

Process context

– 16 – 15-213, F’08

Alternate View of a ProcessAlternate View of a Process
Process = thread + code, data, and kernel contextProcess = thread + code, data, and kernel context

shared libraries

run-time heap

0

read/write dataThread context:
Data registers
Condition codes
Stack pointer (SP)
Program counter (PC)

Code and Data

read-only code/data

stackSP

PC

brk

Thread (main thread)

Kernel context:
VM structures
Descriptor table
brk pointer

– 17 – 15-213, F’08

A Process With Multiple ThreadsA Process With Multiple Threads
Multiple threads can be associated with a processMultiple threads can be associated with a process

Each thread has its own logical control flow
Each thread shares the same code, data, and kernel context

Share common virtual address space (inc. stacks)
Each thread has its own thread id (TID)

shared libraries

run-time heap

0

read/write dataThread 1 context:
Data registers
Condition codes
SP1
PC1

Shared code and data

read-only code/data

stack 1

Thread 1 (main thread)

Kernel context:
VM structures
Descriptor table
brk pointer

Thread 2 context:
Data registers
Condition codes
SP2
PC2

stack 2

Thread 2 (peer thread)

– 18 – 15-213, F’08

Logical View of ThreadsLogical View of Threads
Threads associated with process form a pool of peersThreads associated with process form a pool of peers

Unlike processes which form a tree hierarchy

P0

P1

sh sh sh

foo

bar

T1

Process hierarchyThreads associated with process foo

T2
T4

T5 T3

shared code, data
and kernel context

– 19 – 15-213, F’08

Concurrent Thread ExecutionConcurrent Thread Execution
Two threads run concurrently (are concurrent) if their Two threads run concurrently (are concurrent) if their

logical flows overlap in timelogical flows overlap in time

Otherwise, they are sequentialOtherwise, they are sequential

Examples:Examples:
Concurrent: A & B, A&C
Sequential: B & C

Time

Thread A Thread B Thread C

– 20 – 15-213, F’08

Threads vs. ProcessesThreads vs. Processes
How threads and processes are similarHow threads and processes are similar

Each has its own logical control flow
Each can run concurrently with others
Each is context switched

How threads and processes are differentHow threads and processes are different
Threads share code and data, processes (typically) do not
Threads are somewhat less expensive than processes

Process control (creating and reaping) is twice as expensive as
thread control
Linux/Pentium III numbers:

» ~20K cycles to create and reap a process
» ~10K cycles (or less) to create and reap a thread

– 21 – 15-213, F’08

Posix Threads (Pthreads) InterfacePosix Threads (Pthreads) Interface
PthreadsPthreads:: Standard interface for ~60 functions that Standard interface for ~60 functions that

manipulate threads from C programsmanipulate threads from C programs
Creating and reaping threads

pthread_create()
pthread_join()

Determining your thread ID
pthread_self()

Terminating threads
pthread_cancel()
pthread_exit()
exit() [terminates all threads] , RET [terminates current thread]

Synchronizing access to shared variables
pthread_mutex_init
pthread_mutex_[un]lock
pthread_cond_init
pthread_cond_[timed]wait

– 22 – 15-213, F’08

The Pthreads "hello, world" ProgramThe Pthreads "hello, world" Program
/*
* hello.c - Pthreads "hello, world" program
*/
#include "csapp.h"

void *thread(void *vargp);

int main() {
pthread_t tid;

Pthread_create(&tid, NULL, thread, NULL);
Pthread_join(tid, NULL);
exit(0);

}

/* thread routine */
void *thread(void *vargp) {
printf("Hello, world!\n");
return NULL;

}

Thread attributes
(usually NULL)

Thread arguments
(void *p)

return value
(void **p)

– 23 – 15-213, F’08

Execution of Threaded“hello, world”Execution of Threaded“hello, world”

main thread

peer thread

return NULL;main thread waits for
peer thread to terminate

exit()
terminates

main thread and
any peer threads

call Pthread_create()

call Pthread_join()

Pthread_join() returns

printf()

(peer thread
terminates)

Pthread_create() returns

– 24 – 15-213, F’08

Thread-Based Concurrent Echo
Server
Thread-Based Concurrent Echo
Server
int main(int argc, char **argv)
{

int port = atoi(argv[1]);
struct sockaddr_in clientaddr;
int clientlen=sizeof(clientaddr);
pthread_t tid;

int listenfd = Open_listenfd(port);
while (1) {

int *connfdp = Malloc(sizeof(int));
*connfdp = Accept(listenfd, (SA *) &clientaddr, &clientlen);
Pthread_create(&tid, NULL, echo_thread, connfdp);

}
}

Spawn new thread for each client
Pass it copy of connection file descriptor
Note use of Malloc()!

Without corresponding Free()

– 25 – 15-213, F’08

Thread-Based Concurrent Server
(cont)
Thread-Based Concurrent Server
(cont)

/* thread routine */
void *echo_thread(void *vargp)
{

int connfd = *((int *)vargp);
Pthread_detach(pthread_self());
Free(vargp);
echo(connfd);
Close(connfd);
return NULL;

}

Run thread in “detached” mode
Runs independently of other threads
Reaped when it terminates

Free storage allocated to hold clientfd
“Producer-Consumer” model

– 26 – 15-213, F’08

Process Execution ModelProcess Execution Model

Multiple threads within single process
Some state between them

File descriptors (in this example; usually more)

Client 1
Server
Thread

Client 2
Server
Thread

Listening
Server
Thread

Connection Requests

Client 1 data Client 2 data

– 27 – 15-213, F’08

Potential Form of Unintended SharingPotential Form of Unintended Sharing

main thread

peer1

while (1) {
int connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
Pthread_create(&tid, NULL, echo_thread, (void *) &connfd);

}
}

connfd
Main thread stack

vargp
Peer1 stack

vargp
Peer2 stack

peer2

connfd = connfd1

connfd = *vargpconnfd = connfd2

connfd = *vargp

Race!

Why would both copies of vargp point to same location?

– 28 – 15-213, F’08

Issues With Thread-Based ServersIssues With Thread-Based Servers
Must run Must run ““detacheddetached”” to avoid memory leakto avoid memory leak

At any point in time, a thread is either joinable or detached
Joinable thread can be reaped and killed by other threads

must be reaped (with pthread_join) to free memory resources
Detached thread cannot be reaped or killed by other threads

resources are automatically reaped on termination
Default state is joinable

use pthread_detach(pthread_self()) to make detached

Must be careful to avoid unintended sharing.Must be careful to avoid unintended sharing.
For example, what happens if we pass the address of connfd
to the thread routine?

Pthread_create(&tid, NULL, thread, (void
*)&connfd);

All functions called by a thread must be All functions called by a thread must be threadthread--safesafe
(next lecture)

– 29 – 15-213, F’08

Pros and Cons of Thread-Based
Designs
Pros and Cons of Thread-Based
Designs
+ Easy to share data structures between threads+ Easy to share data structures between threads

e.g., logging information, file cache

+ Threads are more efficient than processes+ Threads are more efficient than processes

------ Unintentional sharing can introduce subtle and hardUnintentional sharing can introduce subtle and hard--
toto--reproduce errors!reproduce errors!

The ease with which data can be shared is both the greatest
strength and the greatest weakness of threads
(next lecture)

– 30 – 15-213, F’08

Approaches to ConcurrencyApproaches to Concurrency
ProcessesProcesses

Hard to share resources: Easy to avoid unintended sharing
High overhead in adding/removing clients

ThreadsThreads
Easy to share resources: Perhaps too easy
Medium overhead
Not much control over scheduling policies
Difficult to debug

Event orderings not repeatable

I/O MultiplexingI/O Multiplexing
Tedious and low level
Total control over scheduling
Very low overhead
Cannot create as fine grained a level of concurrency

