
1

Main Memory and Caches
Sept. 23, 2008

TopicsTopics
DRAM as main memory
Locality of reference
Caches

lecture-09.ppt

15-213
“The course that gives CMU its Zip!”

2 15-213, F’08

Announcements
Exam Thursday (two days from now)Exam Thursday (two days from now)

In class
See exams page on class website for info and old exams

Calculator policyCalculator policy
Calculators will not be needed on the exam; hence forbidden

Collaboration reminderCollaboration reminder
Writing code together counts as “sharing code” - forbidden
Talking through a problem can include pictures (not code)

3 15-213, F’08

Programs Refer to Virtual Memory AddressesPrograms Refer to Virtual Memory Addresses
Conceptually very large array of bytes
Actually implemented with hierarchy of different memory types
System provides address space private to particular “process”

Program being executed
Program can clobber its own data, but not that of others

Compiler + RunCompiler + Run--Time System Control AllocationTime System Control Allocation
Where different program objects should be stored
All allocation within single virtual address space

Byte-Oriented Memory
Organization

• • •
00
••
•0

FF
••
•F

From class02.ppt
4 15-213, F’08

Simple Addressing Modes
NormalNormal (R)(R) Mem[Reg[RMem[Reg[R]]]]

Register R specifies memory address

movl (%ecx),%eax

DisplacementDisplacement D(R)D(R) Mem[Reg[R]+DMem[Reg[R]+D]]
Register R specifies start of memory region
Constant displacement D specifies offset

movl 8(%ebp),%edx

From class04.ppt

2

5 15-213, F’08

Traditional Bus Structure Connecting
CPU and Memory
A A busbus is a collection of parallel wires that carry is a collection of parallel wires that carry

address, data, and control signals.address, data, and control signals.

Buses are typically shared by multiple devices.Buses are typically shared by multiple devices.

main
memory

ALU

register file

bus interface

CPU

memory bus

6 15-213, F’08

Traditional Bus Structure Connecting
CPU and Memory
A A busbus is a collection of parallel wires that carry is a collection of parallel wires that carry

address, data, and control signals.address, data, and control signals.

Buses are typically shared by multiple devices.Buses are typically shared by multiple devices.

main
memory

ALU

register file

bus interface

CPU

memory bus

7 15-213, F’08

Memory Read Transaction (1)

Step 1: CPU places address A on the memory bus with Step 1: CPU places address A on the memory bus with
signal indicating signal indicating ““readread””

ALU

register file

bus interface

0

Ax

main memory

%eax

Load operation: movl A, %eax

CPU

A

8 15-213, F’08

Memory Read Transaction (2)

Steps 2Steps 2--4: Main memory reads A from the memory bus, 4: Main memory reads A from the memory bus,
retrieves word x, and places it on the busretrieves word x, and places it on the bus

ALU

register file

bus interface

0

Ax

main memory

%eax

Load operation: movl A, %eax

CPU

x

3

9 15-213, F’08

Memory Read Transaction (3)

Step 5: CPU reads word x from the bus and copies it Step 5: CPU reads word x from the bus and copies it
into register %into register %eaxeax

x ALU

register file

bus interface

0

Ax

main memory

%eax

Load operation: movl A, %eax

CPU

x

10 15-213, F’08

Memory Write Transaction (1)

Step 1: CPU places address A on the memory bus with Step 1: CPU places address A on the memory bus with
signal indicating signal indicating ““writewrite””

ALU

register file

bus interface

0

A

main memory

%eax

Store operation: movl %eax, A

CPU

A

y

11 15-213, F’08

Memory Write Transaction (2)

Step 2: CPU places data word y on the memory busStep 2: CPU places data word y on the memory bus

ALU

register file

bus interface

0

A

main memory

%eax

Store operation: movl %eax, A

CPU

y

y

12 15-213, F’08

Memory Write Transaction (3)

Steps 3Steps 3--4: Main memory reads data word y from the bus 4: Main memory reads data word y from the bus
and stores it at address Aand stores it at address A

ALU

register file

bus interface

0

Ay

main memory

%eax

Store operation: movl %eax, A

CPU

y

4

13 15-213, F’08

Random-Access Memory (RAM)
Key featuresKey features

RAM is traditionally packaged as a chip
Basic storage unit is normally a cell (one bit per cell)
Multiple RAM chips form a memory

Dynamic RAM (Dynamic RAM (DRAMDRAM))
Common technology for main memory
Organized in two dimensions (rows and columns)

To access: select row then select column
Consequence: 2nd row access faster than different column/row

Some technical details
Each cell stores bit with a capacitor
One transistor is used for access
Value must be refreshed every 10-100 ms

14 15-213, F’08

Conventional DRAM Organization
d x w DRAM:d x w DRAM:

dw total bits organized as d supercells of size w bits

cols

rows

0 1 2 3

0

1

2

3

internal row buffer

16 x 8 DRAM chip

addr

data

2 bits
/

8 bits
/

memory
controller

(to CPU)

15 15-213, F’08

9

Conventional DRAM Organization
d x w DRAM:d x w DRAM:

dw total bits organized as d supercells of size w bits

cols

rows

0 1 2 3

4 5 6 7

8 10 11

12 13 14 15

0 1 2 3

0

1

2

3

internal row buffer

16 x 8 DRAM chip

addr

data

2 bits
/

8 bits
/

memory
controller

(to CPU)

16 15-213, F’08

Conventional DRAM Organization
d x w DRAM:d x w DRAM:

dw total bits organized as d supercells of size w bits

cols

rows

0 1 2 3

0

1

2

3

internal row buffer

16 x 8 DRAM chip

addr

data

2 bits
/

8 bits
/

memory
controller

(to CPU)

5

17 15-213, F’08

Conventional DRAM Organization
d x w DRAM:d x w DRAM:

dw total bits organized as d supercells of size w bits

cols

rows

0 1 2 3

0

1

2

3

internal row buffer

16 x 8 DRAM chip

addr

data

2 bits
/

8 bits
/

memory
controller

(to CPU)
supercell #9

(2,1)

18 15-213, F’08

Reading DRAM Supercell #9 = (2,1)
Step 1(a): Row access strobe (Step 1(a): Row access strobe (RASRAS) selects row 2) selects row 2

cols

rows

RAS = 2 0 1 2 3

0

1

2

internal row buffer

16 x 8 DRAM chip

3

addr

data

2
/

8
/

memory
controller

Step 1(b): Row 2 copied from DRAM array to row buffer

19 15-213, F’08

Reading DRAM Supercell #9 = (2,1)
Step 2(a): Column access strobe (Step 2(a): Column access strobe (CASCAS) selects column 1) selects column 1

cols

rows

0 1 2 3

0

1

2

3

internal row buffer

16 x 8 DRAM chip

CAS = 1

addr

data

2
/

8
/

memory
controller

Step 2(b): Supercell (2,1) copied from buffer to data lines, and
eventually back to the CPU

supercell
(2,1)

supercell
(2,1)

To CPU

20 15-213, F’08

Multi-chip Memory Modules

: supercell (i, j)

64 MB
memory module
consisting of
eight 8Mx8 DRAM
chips

addr (row = i, col = j)

Memory
controller

DRAM 7

DRAM 0

031 78151623243263 394047485556

64-bit doubleword at main memory address A

bits
0-7

bits
8-15

bits
16-23

bits
24-31

bits
32-39

bits
40-47

bits
48-55

bits
56-63

64-bit doubleword

031 78151623243263 394047485556

64-bit doubleword at main memory address A

6

21 15-213, F’08

Memory access is slow
ObervationObervation: memory access is slower than CPU cycles: memory access is slower than CPU cycles

A DRAM chip has an access time of 30-50ns
further, systems may need 3x longer or more to get the data
from memory into a CPU register

With sub-ns cycle times, 100s of cycles per memory access
and, the gap has been growing

CanCan’’t go to memory on every load and storet go to memory on every load and store
approximately 1/3 of instructions are loads or stores

22 15-213, F’08

Caches to the rescue
Cache:Cache: A smaller, faster memory that acts as a staging A smaller, faster memory that acts as a staging

area for a subset of the data in a larger, slower memoryarea for a subset of the data in a larger, slower memory

23 15-213, F’08

General cache mechanics

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Larger, slower, cheaper memory
is partitioned into “blocks”

Data is copied between
levels in block-sized
transfer units

8 9 14 3
Smaller, faster, more expensive
memory caches a subset of
the blocks

Cache:

Memory: 4

4

4 10

10

10

24 15-213, F’08

Request
14

General Caching Concepts (hit)
Program needs object d, which is Program needs object d, which is

stored in some block bstored in some block b
Cache hitCache hit

Program finds b in the cache
E.g., block 14

9 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Cache:

Mem:

1414

14

0 1 2 3

4

7

25 15-213, F’08

General Caching Concepts (miss)
Program needs object d, which is Program needs object d, which is

stored in some block bstored in some block b
Cache hitCache hit

Program finds b in the cache
E.g., block 14

Cache missCache miss
b is not in cache, so must fetch it

E.g., block 12
If cache is full, then some current
block must be replaced (evicted).
Which one is the “victim”?

Placement policy: where can the
new block go? E.g., slot #(b mod 4)
Replacement policy: which block
should be evicted? E.g., LRU

9 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Cache:

Mem:

14

12

12

0 1 2 3

Request
12

4

Request
12

12

12

26 15-213, F’08

Types of cache misses
Cold (compulsory) missCold (compulsory) miss

Cold misses occur on first accesses to given blocks

Conflict missConflict miss
Most hardware caches limit blocks to a small subset
(sometimes a singleton) of the available cache slots

e.g., block i must be placed in slot (i mod 4)
Conflict misses occur when the cache is large enough, but
multiple data objects all map to the same slot

e.g., referencing blocks 0, 8, 0, 8, ... would miss every time

Capacity missCapacity miss
Occurs when the set of active cache blocks (working set) is
larger than the cache

27 15-213, F’08

Types of cache misses
Cold (compulsory) missCold (compulsory) miss

Cold misses occur on first accesses to given blocks

Conflict missConflict miss
Most hardware caches limit blocks to a small subset
(sometimes a singleton) of the available cache slots

e.g., block i must be placed in slot (i mod 4)
Conflict misses occur when the cache is large enough, but
multiple data objects all map to the same slot

e.g., referencing blocks 0, 8, 0, 8, ... would miss every time

Capacity missCapacity miss
Occurs when the set of active cache blocks (working set) is
larger than the cache

28 15-213, F’08

Locality: why caches work
Principle of Locality:Principle of Locality:

Programs tend to use data and instructions with addresses
near or equal to those they have used recently
Temporal locality: Recently referenced items are likely to be
referenced again in the near future
Spatial locality: Items with nearby addresses tend to be
referenced close together in time

Locality Example:
• Data

– Reference array elements in succession
(stride-1 reference pattern):

– Reference sum each iteration:
• Instructions

– Reference instructions in sequence:
– Cycle through loop repeatedly:

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
return sum;

Spatial locality

Spatial locality
Temporal locality

Temporal locality

8

29 15-213, F’08

Locality Example #1
Being able to look at code and get a qualitative sense of Being able to look at code and get a qualitative sense of

its locality is a key skill for a professional programmerits locality is a key skill for a professional programmer

Question:Question: Does this function have good locality?Does this function have good locality?

int sum_array_rows(int a[M][N])
{

int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

sum += a[i][j];
return sum;

}

30 15-213, F’08

Locality Example #2
Question:Question: Does this function have good locality?Does this function have good locality?

int sum_array_cols(int a[M][N])
{

int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)

sum += a[i][j];
return sum;

}

31 15-213, F’08

Locality Example #3
Question:Question: Can you permute the loops so that the Can you permute the loops so that the

function scans the 3function scans the 3--d array d array a[]a[] with a stridewith a stride--1 1
reference pattern (and thus has good spatial reference pattern (and thus has good spatial
locality)?locality)?

int sum_array_3d(int a[M][N][N])
{

int i, j, k, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

for (k = 0; k < N; k++)
sum += a[k][i][j];

return sum;
}

32 15-213, F’08

Memory Hierarchies
Some fundamental and enduring properties of Some fundamental and enduring properties of

hardware and software systems:hardware and software systems:
Faster storage technologies almost always cost more per
byte and have lower capacity
The gaps between memory technology speeds are widening

True of registers:DRAM, DRAM:disk, etc.
Well-written programs tend to exhibit good locality

These properties complement each other beautifullyThese properties complement each other beautifully

They suggest an approach for organizing memory and They suggest an approach for organizing memory and
storage systems known as a storage systems known as a memory hierarchymemory hierarchy

9

33 15-213, F’08

An Example Memory Hierarchy

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,

and
cheaper
(per byte)
memories

remote secondary storage
(tapes, distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers

Main memory holds disk
blocks retrieved from local
disks

off-chip L2
cache (SRAM)

L1 cache holds cache lines retrieved
from the L2 cache

CPU registers hold words retrieved
from L1 cache

L2 cache holds cache lines
retrieved from main memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and

costlier
(per byte)
memories

34 15-213, F’08

Caching is the core concept
Fundamental idea of a memory hierarchy:Fundamental idea of a memory hierarchy:

For each k, the faster, smaller memory at level k serves as a
cache for the larger, slower memory at level k+1

Why do memory hierarchies work?Why do memory hierarchies work?
Locality causes many accesses to be hits at level k

More than its relative size would suggest
Thus, many fewer accesses to level k+1
The storage at level k+1 can be slower, larger and cheaper

Net effect: A large pool of memory with the cost of Net effect: A large pool of memory with the cost of
cheap storage near the bottom, but the performance cheap storage near the bottom, but the performance
of the expensive storage near the topof the expensive storage near the top

35 15-213, F’08

Examples of Caching in the Hierarchy

Hardware0On-Chip TLBAddress
translations

TLB

Web
browser

10,000,000Local diskWeb pagesBrowser
cache
Web cache

Network buffer
cache

Buffer cache

Virtual
Memory

L2 cache
L1 cache

Registers

Cache Type

Web pages

Parts of files
Parts of files

4-KB page
64-bytes block
64-bytes block

4-byte words

What is
Cached?

Web proxy
server

1,000,000,000Remote server
disks

OS100Main memory

Hardware1On-Chip L1
Hardware10Off-Chip L2

AFS/NFS
client

10,000,000Local disk

Hardware+
OS

100Main memory

Compiler0CPU core

Managed
By

Latency
(cycles)

Where is it
Cached?

36 15-213, F’08

Summary
The memory hierarchy is a fundamental consequence The memory hierarchy is a fundamental consequence
of maintaining the of maintaining the random access memoryrandom access memory abstraction abstraction
and practical limits on cost and power consumptionand practical limits on cost and power consumption

Locality makes caching effectiveLocality makes caching effective

Programming for good Programming for good temporaltemporal and and spatialspatial locality is locality is
critical for high performancecritical for high performance

For caching and for row-heavy access to DRAM

Trend: the speed gaps between levels of the memory Trend: the speed gaps between levels of the memory
hierarchy continue to widenhierarchy continue to widen

Consequence: inducing locality becomes even more important

