Carnegie Mellon

o o Wl

PALLLTS

—
e g 10 e Sy
) “ et ol W i \ <"l A g m.-«-é.-..-. Y mnw ' |5-S]3~
s ey 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Bits, Bytes and Integers — Part 1

15-213/18-213/14-513/15-513: Introduction to Computer Systems
2"d Lecture, Aug. 30, 2018

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Announcements

m Recitations are on Mondays, but next Monday (9/3) is
Labor Day, so recitations are cancelled

m Linux Boot Camp Monday evening 7pm, Rashid
Auditorium

m Lab 0 is now available via course web page and Autolab.
® Due Thu Sept. 6, 11:59pm

= No grace days

= No late submissions
= Justdoit!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

https://autolab.andrew.cmu.edu/courses/15213-f16

Logistics
m Waitlist

= 15-213: Mary Widom (marwidom@cs.cmu.edu)
= 18-213: ECE Academic services

ece-asc@andrew.cmu.edu

= 15-513: Mary Widom (marwidom@cs.cmu.edu)
= 14-513: INI Enrollment (ini-enrollment@andrew.cmu.edu)

= Please don’t contact the instructors with waitlist questions.

m Autolab Accounts
= Check whether you have one
" |f not, refer to Piazza @68

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

mailto:cathyf@cs.cmu.edu
mailto:marwidom@cs.cmu.edu

Carnegie Mellon

Today: Bits, Bytes, and Integers

m Representing information as bits

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Everything is bits

m EachbitisOor1l
m By encoding/interpreting sets of bits in various ways

= Computers determine what to do (instructions)

= ... and represent and manipulate numbers, sets, strings, etc...

m Why bits? Electronic Implementation
= Easy to store with bistable elements

= Reliably transmitted on noisy and inaccurate wires

v

«— 0 > < 1 — (0 —

1.1V —

/‘A’\/\
0.9V —

0.2V — /

/\,/_J
0.0V —

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

For example, can count in binary

m Base 2 Number Representation
= Represent 15213,,as 11101101101101,
= Represent 1.20,,as1.0011001100110011[0011]...,
= Represent 1.5213 X 10% as 1.1101101101101, X 213

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

M AN
Encoding Byte Values &
o o &
- . 0 0 0000
m Byte = 8 bits T 11 o001
= Binary 000000002 to 111111112 2 | 2 | 0010
_ 3 3 0011
® Decimal: 010 to 25510 4 | 4 | 0100
. : 5 | 5 | 0101
Hexadecimal 0016 to FFie e ¢ Toi1io
= Base 16 number representation 7 |7 | 0111
= Use characters ‘O’ to ‘9’ and ‘A’ to ‘F’ 8 18 1000
9 9 1001
= Write FA1D37B1sin C as A |10 1010
B (11| 1011
— OxFA1D378B C (12] 1100
_ D |13] 1101
Oxfald37b = 112
F |15

15213: 0011 1011 0110 1101

3 B 6 D

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Example Data Representations

C Data Type Typical 32-bit | Typical 64-bit x86-64

char

short 2 2 2
int 4 4 4
long 4 8 8
float 4 4 4
double 8 8 8
pointer 4 8 8

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

Today: Bits, Bytes, and Integers

m Bit-level manipulations

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Boolean Algebra

m Developed by George Boole in 19th Century
= Algebraic representation of logic

= Encode “True” as 1 and “False” as O

And Or

m A&B =1 when both A=1 and B=1 m A|B =1 when either A=1 or B=1
&[0 1 | 10 1
010 O 00 1
110 1 111 1

Not Exclusive-Or (Xor)

m “A =1 when A=0 s A’B =1 when either A=1 or B=1, but not both
~ SN
01 00 1
110 111 O

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

General Boolean Algebras

m Operate on Bit Vectors

= QOperations applied bitwise

01101001 01101001 01101001
& 01010101 | 01010101 ~ 01010101 =~ 01010101

01000001 01111101 00111100 10101010

m All of the Properties of Boolean Algebra Apply

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Example: Representing & Manipulating Sets

m Representation

= Width w bit vector represents subsets of {0, ..., w—1}

u aJ=1|fJ EA

01101001 {0,3,5,6}
76543210

01010101 {0,2,4,6}

= 76543210
m Operations
= & Intersection 01000001
= | Union 01111101
= A Symmetric difference 00111100
= ~ Complement 10101010

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

{0,6}
{0,2,3,4,5,6}
{2,3,4,5}
{1,3,5,7}

13

Carnegie Mellon

Bit-Level Operations in C

AN

>
¢t 06\6\‘*"‘@

° H : \
m Operations &, |, ~, A Availablein C ‘g‘ ? ?ooo
= Apply to any “integral” data type 1 (1]|0001
. . 2 |2 [0010
long, 1int, short, char, unsigned 3 173 0011
= View arguments as bit vectors 4 |4 |10100
= Arguments applied bit-wise 2 2 81(1)3
7 |7 | 0111
m Examples (Char data type) 8 T8 11000
. Ox4l > 9 [9 [1001
A (10| 1010
B |11 | 1011
= X000 > C [12]1100
D |13]| 1101
E |14 | 1110
= Px69 & Ox55 - F [15]1111

= Ox69 | Ox55 -

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Bit-Level Operations in C

AN
>
et 06\6*‘&*
m Operations &, |, ~, A Availablein C ‘g‘ ? ?ooo
= Apply to any “integral” data type 1 (1]|0001
. . 2 | 2 | 0010
long, 1int, short, char, unsigned 3 13 (0011
= View arguments as bit vectors 4 | 4 |]0100
_ e 5[5 0101
Arguments applied bit-wise 6 16 | 0110
7 |7 | 0111
m Examples (Char data type) 8 T8 11000
= ~0x41 > OxBE 9 | 9 | 1001
o A |10 1010
0100 00012 > 1011 11102 B 111 1011
= ~Qx00 > OxFF C [12] 1100
. ~0000 0000: > 1111 11112 D 1131101
E |14 | 1110
= Ox09 & Ox55 - 0x41 F [15] 1111

- 0110 10012 & 0101 01012 - 0100 00012
= Ox69 | Ox55 - Ox7D
- 0110 10012 | 0101 01012 - 0111 11012

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Contrast: Logic Operations in C

m Contrast to Bit-Level Operators
= Logic Operations: &&, ||, !
= View 0 as “False”
= Anything nonzero as “True”
= AlwaysreturnOor 1

= Early termination

m Examples (char data type) BRI TRIE XA RACLERIRTH I
= 10x41 > 0x00 one of the more common oopsies in

1Ox00 > 0Ox01 C programming

'10x41> 0Ox01

Ox09 && Ox55 > 0x01
0x09 || Ox55 - 0x01

p && *p (avoids null pointer access)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Shift Operations

m Left Shift: x << y Argument x| 01100010

= Shift bit-vector x left y positions << 3 00010000

— Throw away extra bits on left
= Fill with 0’s on right
m Right Shift: x >> y
= Shift bit-vector x right y positions

Log.>> 2 | 00011000

Arith. >> 2| 00011000

= Throw away extra bits on right Argument x| 10100010

= Logical shift << 3 00010000

= Fill with 0’s on left Log. >> 2 | 00101000
= Arithmetic shift

= Replicate most significant bit on left

Arith. >> 2| 11101000

m Undefined Behavior

= Shift amount < 0 or = word size

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Today: Bits, Bytes, and Integers

O
O
m Integers
= Representation: unsigned and signed
U
U
U
U
O
O

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Encoding Integers

Unsigned Two’s Complement
w—1 . w—2 .
B2UX) = Y x -2 B2T(X) = —x,,-2"" + Y x-2
i=0 i=0
short int x = 15213; ‘\\\\\\\
short int y = -15213; Sign Bit

m Cdoes not mandate using two’s complement

= But, most machines do, and we will assume so

m Cshort 2 bytes long

Decimal Hex Binary
X 15213| 3B 6D| 00111011 01101101
Yy -15213| C4 93| 11000100 10010011

m Sign Bit
" For 2’s complement, most significant bit indicates sign
= 0 for nonnegative

=] for negative

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Two-complement: Simple Example

-16 8 4 2 1

10= 0 1 O0 1 O 8+2 10

-16 8 4 2 1
-10=1 0 1 1 O -16+4+2 = -10

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Two-complement Encoding Example (Cont.)

X = 15213: 00111011 01101101
y = -15213: 11000100 10010011
Weight 15213 -15213
1 1 1 1 1
2 0 0 1 2
4 1 4 0 0
3 1 8 0 0
16 0 0 1 16
32 1 32 0 0
64 1 64 0 0
128 0 0 1 128
256 1 256 0 0
512 1 512 0 0
1024 0 0 1 1024
2048 1 2048 0 0
4096 1 4096 0 0
8192 1 8192 0 0
16384 0 0 1 16384
-32768 0 0 1 -32768

Sum 15213 -15213

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Numeric Ranges

= Unsigned Values m Two’s Complement Values

[] 1 -
UMin 0 = TMin = —2w
000..0 100...0
[- w _
UMax 2t-1 " TMax = 211
111...1 011..1
" Minus1
111...1
Values for W =16
Decimal Hex Binary
UMax 65535| FF FF| 11111111 11111111
TMax 32767 7F FF| 01111111 11111111
TMin -32768| 80 00| 10000000 00000000
-1 -1 FF FF| 11111111 11111111
0 0of 00 00| 00000000 00OOOOOOO

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Values for Different Word Sizes

W
8 16 32 64
UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615
TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807
TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808
m Observations m CProgramming
= |TMin| = TMax+1 = Hinclude <limits.h>
= Asymmetric range = Declares constants, e.g.,
= UMax = 2*TMax+1 = ULONG_MAX
= LONG_MAX
= LONG_MIN

= Values platform specific

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

Unsigned & Signed Numeric Values

X B2U(X) | B2T(X)
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 -8
1001 9 7
1010 10 -6
1011 11 -5
1100 12 —4
1101 13 -3
1110 14 =)
1111 15 N

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

m Equivalence

= Same encodings for nonnegative
values

m Uniqueness

= Every bit pattern represents
unique integer value

= Each representable integer has
unique bit encoding

m = Can Invert Mappings

= U2B(x) = B2U1(x)
= Bit pattern for unsigned
integer
= T2B(x) = B2T1(x)
= Bit pattern for two’s comp
integer

24

Carnegie Mellon

Quiz Time!

Check out:

https://canvas.cmu.edu/courses/5835

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

https://canvas.cmu.edu/courses/1221

Carnegie Mellon

Today: Bits, Bytes, and Integers

O
O
m Integers
o
= Conversion, casting
o
o
o
O

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Mapping Between Sighed & Unsignhed

Two’s Complement B Unsigned

X *| T2B *| B2U > UX
X

Maintain Same Bit Pattern

Unsigned U2T Two’s Complement

Ux [U2B]——{ B2T - X
X

Maintain Same Bit Pattern

m Mappings between unsigned and two’s complement numbers:
Keep bit representations and reinterpret

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Mapping Signed <> Unsignhed

Bits Signed Unsigned
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 —Tul— 5
0110 6 6
0111 7 —1U2T}- 7
1000 -8 8
1001 -7 9
1010 -6 10
1011 -5 11
1100 -4 12
1101 -3 13
1110 -2 14
1111 -1 15

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Mapping Signed <> Unsignhed

Bits Signed Unsigned
0000 0 0
0001 1 1
0010 2 2
0011 3 — 3
0100 4 4> 4
0101 5 5
0110 6 6
0111 7 7
1000 -8 8
1001 -7 9
1010 -6 10
1011 -5 +/- 16 11
1100 -4 12
1101 -3 13
1110 -2 14
1111 -1 15

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Carnegie Mellon

Relation between Sighed & Unsigned

Two’s Complement Unsigned
P T2U
X »| T2B | B2U - UX
X

Maintain Same Bit Pattern

w—1 0
Ux |+|+|+ o0 +|+|+

X -1+1+ o0 0 +1+|+

Large negative weight
becomes
Large positive weight

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

Conversion Visualized

m 2’s Comp. — Unsigned

= QOrdering Inversion o ZAI\ZGX .
= Negative — Big Positive ax—
_ /~® TMax +1
TMax @ *® TNMax

2’s Complement
Range

&.

| TMin

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Unsigned
Range

31

Signed vs. Unsigned in C

m Constants
= By default are considered to be signed integers

= Unsigned if have “U” as suffix
0U, 42949672590

m Casting
= Explicit casting between signed & unsigned same as U2T and T2U
int tx, ty;
unsigned ux, uy;
tx = (int) ux;

uy

(unsigned) ty;

= |mplicit casting also occurs via assignments and procedure calls
tx = ux; int fun (unsigned u) ;

uy = ty; uy = fun (tx);

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32

Casting Surprises

m Expression Evaluation

= |f there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned

" Including comparison operations <, >, ==, <=, >=
= Examples for W=32: TMIN =-2,147,483,648, TMAX=2,147,483,647

m Constant, Constant, Relation Evaluation
0 ou == unsigned
-1 0 < signed
1 ouU > unsigned
2147483647 -2147483647-1 > signed
2147483647V -2147483647-1 < unsigned
-1 -2 > signed
(unsigned)-1 -2 > unsigned
2147483647 2147483648U < unsigned
2147483647 (int) 2147483648U > signed

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33

Carnegie Mellon

Unsigned vs. Sighed: Easy to Make Mistakes

unsigned 1i;
for (1 = cnt-2; 1 >= 0; i--)
al[i] += a[i+1l];

= Can be very subtle
#define DELTA sizeof (int)
int 1i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34

Carnegie Mellon

Summary
Casting Signed € Unsigned: Basic Rules

m Bit pattern is maintained
m But reinterpreted

m Can have unexpected effects: adding or subtracting 2%

m Expression containing signed and unsigned int
" intiscasttounsigned!!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35

Carnegie Mellon

Today: Bits, Bytes, and Integers

O
O
m Integers
o
o
= Expanding, truncating
o
o
O

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36

Carnegie Mellon

Sign Extension
m Task:

= Given w-bit signed integer x

= Convert it to w+k-bit integer with same value
m Rule:

= Make k copies of sign bit:

r —
" X = X1 yeer Xoy—1 » X1 » Xiy—2 r+» X0

k copies of MSB < w >
o 00
X ' o 00 o 00

<€ k > <€ w >

Bryant and O’Hallaron, Computer Systems: A Programmer’s| _ ctive, Third Edition 37

Carnegie Mellon

Sign Extension: Simple Example

Positive number Negative number
-16 8 4 2 1 -16 8 4 2 1
10 = O 1 0 1 o0 -10 = 0O 1 1 o0
-3 16 8 4 2 1 -3 16 8 4 2 1
10= 0 0 1 0 1 0 ~10 = 1 { o 1 1 0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38

Larger Sign Extension Example

short int x = 15213;

int ix = (int) x;

short int y = -15213;

int iy = (int) y;

Decimal Hex Binary

x 15213 3B 6D 00111011 01101101
ix 15213 | 00 00 3B 6D 00000000 00000000 00111011 O1101101
y -15213 C4 93 11000100 10010011
iy -15213| FF FF C4 93 11111111 11111111 11000100 10010011

m Converting from smaller to larger integer data type
m C automatically performs sign extension

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39

Carnegie Mellon

Truncation
m Task:

= Given k+w-bit signed or unsigned integer X

= Convert it to w-bit integer X’ with same value for “small enough” X
m Rule:

= Drop top k bits:

m X' = Xw=11 Xw=2,---» Xp

<€ k > € w >
X o000 o000
X’ o000

<€ w >

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40

Truncation: Simple Example

No sigh change Sign change

-16 8 4 2 1 -16 8 4 2 1

2 = 0 0 0 1 0 10 = 0 1 0 1 0

-8 4 2 1 -8 4 2 1

2 = 0 0 1 0 -6 = 1 0 1 0
2 mod 16 = 2 10 mod 16 = 10U mod 16 = 10U = -6

-16 8 4 2 1 -16 8 4 2 1

-6 = 1 1 0 1 0 -10 = 1 0 1 1 0

-8 4 2 1 -8 4 2 1

-6 = 1 0 1 0 6 = 0 1 1 0
-6 mod 16 = 26U mod 16 = 10U = -6 -10 mod 16 = 22U mod 16 = 6U = 6

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41

Carnegie Mellon

Summary:
Expanding, Truncating: Basic Rules

m Expanding (e.g., short int to int)
= Unsigned: zeros added
= Signed: sign extension

= Both yield expected result

m Truncating (e.g., unsigned to unsigned short)
= Unsigned/signed: bits are truncated
= Result reinterpreted
= Unsigned: mod operation
= Signed: similar to mod

= For small (in magnitude) numbers yields expected behavior

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 42

Carnegie Mellon

Summary of Today: Bits, Bytes, and Integers

m Representing information as bits
m Bit-level manipulations

m Integers
= Representation: unsigned and signed
= Conversion, casting
= Expanding, truncating

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43

