
15-213 Recitation 7

Caches and Blocking

8 October 2018

Agenda

• Reminders
• Revisiting Cache Lab
• Caching Review
• Blocking to reduce cache misses
• Cache alignment

Reminders

• Due Dates
• Drop Date (Today 10/8)
• Cache Lab (Thursday 10/11)
• Midterm Exam (Monday 10/15 – Friday 10/19)

• Practice Problems
• Exam Server
• Website (32-bit, but still useful)

• Midterm Review Session
• Sunday 10/14

Reminders: Cache Lab

• Part 1: Write a cache simulator
• Substantial amount of C code!

• Part 2: Optimize some code to minimize cache misses
• Substantial amount of thinking!

• Part 3: Style Grades
• Worth about a letter grade on this assignment

• Few examples in appendix

• Full guide on course website

• Git matters!

Cache Lab: Parsing Input with fscanf

• fscanf(FILE *stream, const char *format, …)
• “scanf” but for files

• Arguments
1. A stream pointer, e.g. from fopen()
2. Format string for parsing, e.g “%c %d,%d”
3+. Pointers to variables for parsed data

• Can be pointers to stack variables

• Return Value
• Success: # of parsed vars
• Failure: EOF

• man fscanf

fscanf() Example
FILE *pFile;

pFile = fopen(“trace.txt”, "r"); // Open file for reading

// TODO: Error check sys call

char access_type;

unsigned long address;

int size;

// Line format is " S 2f,1" or " L 7d0,3"

// - 1 character, 1 hex value, 1 decimal value

while (fscanf(pFile, " %c %lx, %d", &access_type, &address, &size) > 0)

{

// TODO: Do stuff

}

fclose(pFile); // Clean up Resources

Cache Lab: Cache Simulator Hints

• Goal:
• Count hits, misses, evictions and # of dirty bytes

• Procedure
• Least Recently Used (LRU) replacement policy
• Structs are great ways to bundle various parts of cache line

(valid bit, tag, LRU counter, etc.)
• A cache is like a 2D array of cache lines

struct cache_line cache[S][E];

• Your simulator needs to handle different values of S, E, and b
(block size) given at run time

• Dynamically allocate memory!

Class Question / Discussions

• We’ll work through a series of questions
• Write down your answer for each question
• You can discuss with your classmates

void who(int *arr, int size) {

for (int i = 0; i < size-1; ++i)

arr[i] = arr[i+1];

}

• The following function exhibits which type of
locality? Consider only array accesses.

What Type of Locality?

9

A. Spatial

B. Temporal

C. Both A and B

D. Neither A nor B

void who(int *arr, int size) {

for (int i = 0; i < size-1; ++i)

arr[i] = arr[i+1];

}

• The following function exhibits which type of
locality? Consider only array accesses.

What Type of Locality?

10

A. Spatial

B. Temporal

C. Both A and B

D. Neither A nor B

void coo(int *arr, int size) {

for (int i = size-2; i >= 0; --i)

arr[i] = arr[i+1];

}

• The following function exhibits which type of
locality? Consider only array accesses.

What Type of Locality?

11

A. Spatial

B. Temporal

C. Both A and B

D. Neither A nor B

void coo(int *arr, int size) {

for (int i = size-2; i >= 0; --i)

arr[i] = arr[i+1];

}

• The following function exhibits which type of
locality? Consider only array accesses.

What Type of Locality?

12

A. Spatial

B. Temporal

C. Both A and B

D. Neither A nor B

• Given the following address partition, how many
int values will fit in a single data block?

Calculating Cache Parameters

13

18 bits 10 bits 4 bits

031

Tag Set

index

Block offset

Address:

of int in block

A. 0

B. 1

C. 2

D. 4

E. Unknown: We
need more info

• Given the following address partition, how many
int values will fit in a single data block?

Calculating Cache Parameters

14

18 bits 10 bits 4 bits

031

Tag Set

index

Block offset

Address:

of int in block

A. 0

B. 1

C. 2

D. 4

E. Unknown: We
need more info

Interlude: terminology

• A direct-mapped cache only contains one line per set. This
means E = 2e = 1.

Memory 000 001 010 011 100 101 110 111

Cache (bytes) B0 B1 B0 B1

Cache (lines) L0 L0

Cache (sets) S0 S1

Interlude: terminology

• A fully associative cache has 1 set, and many lines for that
one set. This means S = 2s = 1.

Cache (bytes) B0 B1 B0 B1

Cache (lines) L0 L1

Cache (sets) S0

Memory 000 001 010 011 100 101 110 111

• Assuming a 32-bit address (i.e. m=32), how many bits
are used for tag (t), set index (s), and block offset (b).

Direct-Mapped Cache Example

17

Valid

Valid

Tag

Tag

Set 0:

Set 1:

E = 1 lines per setCache block

Cache block

8 bytes

per data block

Valid

Valid

Tag

Tag

Set 2:

Set 3:

Cache block

Cache block

t s b

A. 1 2 3

B. 27 2 3

C. 25 4 3

D. 1 4 8

E. 20 4 8

t bits s bits b bits

031

Tag Set index Block offset

• Assuming a 32-bit address (i.e. m=32), how many bits
are used for tag (t), set index (s), and block offset (b).

Direct-Mapped Cache Example

18

Valid

Valid

Tag

Tag

Set 0:

Set 1:

E = 1 lines per setCache block

Cache block

8 bytes

per data block

Valid

Valid

Tag

Tag

Set 2:

Set 3:

Cache block

Cache block

t s b

A. 1 2 3

B. 27 2 3

C. 25 4 3

D. 1 4 8

E. 20 4 8

t bits s bits b bits

031

Tag Set index Block offset

Which Set Is it?
• Which set is the address 0xFA1C located in?

19

Valid

Valid

Tag

Tag

Set 0:

Set 1:

E = 1 lines per setCache block

Cache block

8 bytes

per data block

Valid

Valid

Tag

Tag

Set 2:

Set 3:

Cache block

Cache block

27 bits 2 bits 3 bits

031

Tag Set index Block offset

Set # for 0xFA1C

A. 0

B. 1

C. 2

D. 3

E. More than one
of the above

Which Set Is it?
• Which set is the address 0xFA1C located in?

20

Valid

Valid

Tag

Tag

Set 0:

Set 1:

E = 1 lines per setCache block

Cache block

8 bytes

per data block

Valid

Valid

Tag

Tag

Set 2:

Set 3:

Cache block

Cache block

27 bits 2 bits 3 bits

031

Tag Set index Block offset

Set # for 0xFA1C

A. 0

B. 1

C. 2

D. 3

E. More than one
of the above

• What range of addresses will be in the same block as
address 0xFA1C?

Cache Block Range

21

Valid

Valid

Tag

Tag

Set 0:

Set 1:

Cache block

Cache block

8 bytes

per data block

Valid

Valid

Tag

Tag

Set 2:

Set 3:

Cache block

Cache block

27 bits 2 bits 3 bits

031

Tag Set index Block offset

Addr. Range

A. 0xFA1C

B. 0xFA1C – 0xFA23

C. 0xFA1C – 0xFA1F

D. 0xFA18 – 0xFA1F

E. It depends on

the access size
(byte, word, etc)

• What range of addresses will be in the same block as
address 0xFA1C?

Cache Block Range

22

Valid

Valid

Tag

Tag

Set 0:

Set 1:

Cache block

Cache block

8 bytes

per data block

Valid

Valid

Tag

Tag

Set 2:

Set 3:

Cache block

Cache block

27 bits 2 bits 3 bits

031

Tag Set index Block offset

Addr. Range

A. 0xFA1C

B. 0xFA1C – 0xFA23

C. 0xFA1C – 0xFA1F

D. 0xFA18 – 0xFA1F

E. It depends on

the access size
(byte, word, etc)

int foo(int* a, int N)

{

int i;

int sum = 0;

for(i = 0; i < N; i++)

{

sum += a[i];

}

return sum;

}

Cache Misses

Accessed

Bytes

A 4

B 16

C 64

D 256

If N = 16, how many bytes does the loop access of a?

int foo(int* a, int N)

{

int i;

int sum = 0;

for(i = 0; i < N; i++)

{

sum += a[i];

}

return sum;

}

Cache Misses

Accessed

Bytes

A 4

B 16

C 64

D 256

If N = 16, how many bytes does the loop access of a?

Cache Misses

Miss Rate

A 0 %

B 25 %

C 33 %

D 50 %

E 66 %

void muchAccessSoCacheWow(int *bigArr){

// 48 KB array of ints

int length = (48*1024)/sizeof(int);

int access = 0;

// traverse array with stride 8

// pass 1

for(int i = 0; i < length; i+=8){

access = bigArr[i];

}

// pass 2

for(int i = 0; i < length; i+=8){

access = bigArr[i];

}

}

Consider a 32 KB cache in a 32 bit address space. The cache is 8-way associative

and has 64 bytes per block. A LRU (Least Recently Used) replacement policy is used.

What is the miss rate on ‘pass 1’?

Cache Misses

Miss Rate

A 0 %

B 25 %

C 33 %

D 50 %

E 66 %

void muchAccessSoCacheWow(int *bigArr){

// 48 KB array of ints

int length = (48*1024)/sizeof(int);

int access = 0;

// traverse array with stride 8

// pass 1

for(int i = 0; i < length; i+=8){

access = bigArr[i];

}

// pass 2

for(int i = 0; i < length; i+=8){

access = bigArr[i];

}

}

Consider a 32 KB cache in a 32 bit address space. The cache is 8-way associative

and has 64 bytes per block. A LRU (Least Recently Used) replacement policy is used.

What is the miss rate on ‘pass 1’?

Cache Misses

Miss Rate

A 0 %

B 25 %

C 33 %

D 50 %

E 66 %

void muchAccessSoCacheWow(int *bigArr){

// 48 KB array of ints

int length = (48*1024)/sizeof(int);

int access = 0;

// traverse array with stride 8

// pass 1

for(int i = 0; i < length; i+=8){

access = bigArr[i];

}

// pass 2

for(int i = 0; i < length; i+=8){

access = bigArr[i];

}

}

Consider a 32 KB cache in a 32 bit address space. The cache is 8-way associative

and has 64 bytes per block. A LRU (Least Recently Used) replacement policy is used.

What is the miss rate on ‘pass 2’?

Cache Misses

Miss Rate

A 0 %

B 25 %

C 33 %

D 50 %

E 66 %

void muchAccessSoCacheWow(int *bigArr){

// 48 KB array of ints

int length = (48*1024)/sizeof(int);

int access = 0;

// traverse array with stride 8

// pass 1

for(int i = 0; i < length; i+=8){

access = bigArr[i];

}

// pass 2

for(int i = 0; i < length; i+=8){

access = bigArr[i];

}

}

Consider a 32 KB cache in a 32 bit address space. The cache is 8-way associative

and has 64 bytes per block. A LRU (Least Recently Used) replacement policy is used.

What is the miss rate on ‘pass 2’?

Detailed explanation in Appendix!

Cache-Friendly Code

• Keep memory accesses bunched together
• In both time and space (address)

• The working set at any time should be smaller than the cache
• Avoid access patterns that cause conflict misses
• Align accesses to use fewer cache sets (often means dividing

data structures into pieces whose sizes are powers of 2)

Cache Alignment

Suppose you have arrays:
int[8] A, B, temp;

• A[0], B[0] and temp[0] all correspond to byte 0 of set 0 on
the cache. We say that all three arrays are cache-aligned.

• For example, suppose we use a direct-mapped cache. If we request
first A[0] then B[0], the cache will evict the line containing A[0].

Very Hard Cache Problem

• We will use a direct-mapped cache with 2 sets, which each can
hold up to 4 int’s.

• How can we copy A into B, shifted over by 1 position?
• The most efficient way? (Use temp!)

A 0 1 2 3 4 5 6 7

B 0 1 2 3 4 5 6 7

Number of misses:

A 0 1 2 3 4 5 6 7

B 0 1 2 3 4 5 6 7

temp 0 1 2 3 4 5 6 7

Number of misses:

A 0 1 2 3 4 5 6 7

B 0 1 2 3 4 5 6 7

temp 0 1 2 3 4 5 6 7

 Could’ve been 16 misses otherwise!

We would save even more if the block size
were larger, or if temp were already cached

If You Get Stuck

Please read the writeup

Read it again after doing ~25% of the lab
◼CS:APP Chapter 6

◼View lecture notes and course FAQ at http://www.cs.cmu.edu/~213

◼Office hours Sunday through Thursday 5:00-9:00pm in WeH 5207

◼Post a private question on Piazza

◼man malloc, man gdb, gdb's help command

◼http://csapp.cs.cmu.edu/public/waside/waside-blocking.pdf

http://www.cs.cmu.edu/~213

Appendix: C Programming Style

• Properly document your code
• Function + File header comments, overall operation of large blocks, any tricky bits

• Write robust code – check error and failure conditions

• Write modular code
• Use interfaces for data structures, e.g. create/insert/remove/free functions for a

linked list
• No magic numbers – use #define or static const

• Formatting
• 80 characters per line (use Autolab’s highlight feature to double-check)

• Consistent braces and whitespace

• No memory or file descriptor leaks

• Git commit history

Appendix: Git Usage

• Commit early and often!
• At minimum at every major milestone

• Commits don’t cost anything!

• Popular stylistic conventions
• Branches: short, descriptive names

• Commits: A single, logical change. Split large changes into multiple

commits.

• Messages:

• Summary: Descriptive, yet succinct

• Body: More detailed description on what you changed, why you

changed it, and what side effects it may have

Appendix: Blocking Example

• We have a 2D array int[4][4] A;
• Cache is fully associative and can hold two lines
• Each line can hold two int values

• Discuss the following questions with your neighbor:

• What is the best miss rate for traversing A once?
• What order does of traversal did you use?

• What other traversal orders can achieve this miss rate?

Appendix: Discussion Questions

• What did the optimal transversal orders have in common?

• How does the pattern generalize to int[8][8] A and a
cache that holds 4 lines each of 4 int’s?

int foo(int* a, int N)

{

int i;

int sum = 0;

for(i = 0; i < N; i++)

{

sum += a[i];

}

return sum;

}

Appendix: Cache Misses

Misses

A 0

B 8

C 12

D 14

E 16

If there is a 48B cache with 8 bytes per block and 3 cache lines

per set, how many misses if foo is called twice? N still equals 16.

NOTE: This is a contrived example since the number of cache lines must be a power of 2.

However, it still demonstrates an important point.

int foo(int* a, int N)

{

int i;

int sum = 0;

for(i = 0; i < N; i++)

{

sum += a[i];

}

return sum;

}

Appendix: Cache Misses

Misses

A 0

B 8

C 12

D 14

E 16

If there is a 48B cache with 8 bytes per block and 3 cache lines

per set, how many misses if foo is called twice? N still equals 16.

NOTE: This is a contrived example since the number of cache lines must be a power of 2.

However, it still demonstrates an important point.

Appendix: 48KB Cache Explained (1)
We access the int array in strides of 8 (note the comment and the i += 8). Each block is 64 bytes, which is enough to hold 16 ints,

so in each block:

| 8 ints = 32B | 8 ints = 32B |

+---------------+---------------+

|m| | | | | | | |h| | | | | | | |

+---------------+---------------+

| 16 ints = 64B

The "m" denotes a miss, and the "h" denotes a hit. This pattern will repeat for the entirety of the array.

We can be sure that the second access is always a hit. This is because the first access will load the entire 64-byte block into the

cache (since the entire block is always loaded if any of its elements are accessed).

So, the big question is why the first access is always a miss. To answer this, we must understand many things about the cache.

First of all, we know that s, the number of set bits, is 6, which means there are 64 sets. Since each set maps to 64 bytes (as there

are b = 6 block bits), we know that every 64 * 64 bytes = 4 kilobytes we run out of sets:

64B 64B 64B 64B

+-------+-------+--...--+--------+-------+--...

| set 0 | set 1 | | set 63 | set 0 |

+-------+-------+--...--+--------+-------+--...

| 64 * 64B = 4KB |

Clearly, this pattern will repeat for the entirety of the array.

Appendix: 48KB Cache Explained (2)
However, note that we have E = 8 lines per set. That means that even though the next 4KB map to the same sets (0-63) as the first

4KB, they will just be put in another line in the cache, until we run out of lines (i.e., after we've gone through 8 * 4KB = 32KB of

memory). Splitting up the bigArr into 16KB chunks:

16KB 16KB 16KB

+-----------+-----------+-----------+

| section A | section B | section C |

+-----------+-----------+-----------+

| | | | | | | | | | | | |

4KB each

We see that section A will take up 16KB = 4 * 4KB; like we said, each of those 4KB chunks will take up 1 line each, so section A

uses 4 lines per set (and uses all 64 sets).

Similarly, section B also takes up 16KB = 4 * 4KB; again, each of those 4KB chunks will take up 1 line each, so section B also uses

4 lines per set (and uses all 64 sets).

Note that as all of this data is being loaded in, our cache is still cold (does not contain any data from those sections), so the

previous assumption about the first of every other access missing (the "m" above) is still true.

After we read in sections A and B, the cache looks like:

line 0 1 2 3 4 5 6 7

+-------+-------+

0 | | |

1 | | |

s

e . . A . B .

t

62| | |

63| | |

+-------+-------+

Appendix: 48KB Cache Explained (3)
However, once we reach section C, we've run out of lines! So what do we have to do? We have to start evicting lines. And of course,

the least-recently used lines are the ones used to store the data from A (lines 0-3), since we just loaded in the stuff from B. So,

first of all, these evictions are causing misses on the first of every other read, so that "m" assumption is still true. Second,

after we read in the entirety of section C, the cache looks like:

line 0 1 2 3 4 5 6 7

+-------+-------+

0 | | |

1 | | |

s

e . . C . B .

t

62| | |

63| | |

+-------+-------+

Thus, we know now that the miss rate for the first pass is 50%.

Appendix: 48KB Cache Explained (4)
If we now consider the second pass, we're starting over at the beginning of bigArr (i.e., now we're reading section A). However,

there's a problem - section A isn't in the cache anymore! So we get a bunch of evictions (the "m" assumption is still true, of

course, since these evictions must also be misses). What are we evicting? The least-recently used lines, which are now lines 4-7

(holding data from B). Thus, the cache after reading section A looks like:

line 0 1 2 3 4 5 6 7

+-------+-------+

0 | | |

1 | | |

s

e . . C . A .

t

62| | |

63| | |

+-------+-------+

Then, we access B. But it isn't in the cache either! So we evict the least-recently-used lines (in this case, the lines that were

holding section C, 0-3) (the "m" assumption still holds); afterwards, the cache looks like:

line 0 1 2 3 4 5 6 7

+-------+-------+

0 | | |

1 | | |

s

e . . B . A .

t

62| | |

63| | |

+-------+-------+

Appendix: 48KB Cache Explained (5)

And finally, we access section C. But of course, its data isn't in the cache at all, so we again evict the least-recently used lines

(in this case, section A's lines, 4-7) (again, "m" assumption holds):

line 0 1 2 3 4 5 6 7

+-------+-------+

0 | | |

1 | | |

s

e . . B . C .

t

62| | |

63| | |

+-------+-------+

And so the miss rate is 50% for the second pass as well.

Thank you to Stan Zhang for coming up with such a detailed explanation!

