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Cachelab Style Grading

 Style grades will be available "soon"
▪ Click on your score to view feedback for each rubric item

▪ Make sure points are added correctly!

▪ File regrade requests on Piazza if we made a mistake.

 Common mistakes
▪ Missing descriptions at the top of your file and functions

▪ Error-checking for malloc and fopen

▪ Writing everything in main function without helpers.

▪ Lack of comments in general.

 Keep style in mind as you work on tshlab!

▪ Error-checking is particularly important to consider
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Shell Lab

 Due date: next Tuesday (October 30th)

 Simulate a Linux-like shell with I/O redirection

 Review the writeup carefully.
▪ Review once before starting, and again when halfway through 

▪ This will save you a lot of style points and a lot of grief!

 Read Chapter 8 in the textbook:
▪ Process lifecycle and signal handling

▪ How race conditions occur, and how to avoid them

▪ Be careful not to use code from the textbook without 
understanding it first.
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Process “Lifecycle”

 fork()
Create a duplicate, a “child”, of the process

 execve()
Replace the running program

 exit()
End the running program

 waitpid()
Wait for a child process to terminate
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Notes on Examples

 Full source code of all programs is available
▪ TAs may demo specific programs

 In the following examples, exit() is called
▪ We do this to be explicit about the program’s behavior

▪ Exit should generally be reserved for terminating on error

 Unless otherwise noted, assume all syscalls succeed
▪ Error checking code is omitted.

▪ Be careful to check errors when writing your own shell!
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Processes are separate

 How many lines are printed?

 If pid is at address 0x7fff2bcc264c, what is printed?

int main(void) {
pid_t pid;
pid = fork();
printf("%p - %d\n", &pid, pid);
exit(0);

}
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Processes are separate

 How many lines are printed?

 If pid is at address 0x7fff2bcc264c, what is printed?

int main(void) {
pid_t pid;
pid = fork();
printf("%p - %d\n", &pid, pid);
exit(0);

} 0x7fff2bcc264c - 24750  
0x7fff2bcc264c - 0

The order and the child's PID (printed by 
the parent) may vary, but the address will 
be the same in the parent and child.
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Processes Change

 What does this program print?

int main(void) {
char *args[3] = {

"/bin/echo", "Hi 18213!", NULL
};
execv(args[0], args);
printf("Hi 15213!\n");
exit(0);

}
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Processes Change

 What does this program print?

int main(void) {
char *args[3] = {

"/bin/echo", "Hi 18213!", NULL
};
execv(args[0], args);
printf("Hi 15213!\n");
exit(0);

}

Hi 18213!
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Processes Change

 What about this program? What does it print?

int main(void) {
char *args[3] = {

"/bin/blahblah", "Hi 15513!", NULL
};
execv(args[0], args);
printf("Hi 14513!\n");
exit(0);

}
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Processes Change

 What about this program? What does it print?

int main(void) {
char *args[3] = {

"/bin/blahblah", "Hi 15513!", NULL
};
execv(args[0], args);
printf("Hi 14513!\n");
exit(0);

}

Hi 14513!
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On Error

 What should we do if malloc fails?

const size_t HUGE = 1 * 1024 * 1024 * 1024;
int main(void) {

char *buf = malloc(HUGE * HUGE);

printf("Buf at %p\n", buf);
free(buf);
exit(0);

}
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On Error

 What should we do if malloc fails?

const size_t HUGE = 1 * 1024 * 1024 * 1024;
int main(void) {

char *buf = malloc(HUGE * HUGE);

printf("Buf at %p\n", buf);
free(buf);
exit(0);

}

if (buf == NULL) {
fprintf(stderr, "Failure at %u\n", __LINE__);
exit(1);

}
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Exit values can convey information

 Two values are printed. Are they related?

int main(void) {
pid_t pid = fork();
if (pid == 0) { exit(getpid()); }
else {

int status = 0;
waitpid(pid, &status, 0);
printf("0x%x exited with 0x%x\n", pid,

WEXITSTATUS(status));
}
exit(0);

}
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Exit values can convey information

 Two values are printed. Are they related?

int main(void) {
pid_t pid = fork();
if (pid == 0) { exit(getpid()); }
else {

int status = 0;
waitpid(pid, &status, 0);
printf("0x%x exited with 0x%x\n", pid,

WEXITSTATUS(status));
}
exit(0);

} 0x7b54 exited with 0x54

They're the same!... almost.
Exit codes are only one byte in size.
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Processes have ancestry

 What's wrong with this code? (assume that fork succeeds)

int main(void) {
int status = 0, ret = 0;
pid_t pid = fork();
if (pid == 0) {

pid = fork();
exit(getpid());

}

ret = waitpid(-1, &status, 0);
printf("Process %d exited with %d\n", ret, status);

ret = waitpid(-1, &status, 0);
printf("Process %d exited with %d\n", ret, status);
exit(0);

}
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Processes have ancestry

 What's wrong with this code? (assume that fork succeeds)

int main(void) {
int status = 0, ret = 0;
pid_t pid = fork();
if (pid == 0) {

pid = fork();
exit(getpid());

}

ret = waitpid(-1, &status, 0);
printf("Process %d exited with %d\n", ret, status);

ret = waitpid(-1, &status, 0);
printf("Process %d exited with %d\n", ret, status);
exit(0);

}

waitpid will reap only 
children, not grandchildren, 
so the second waitpid call 
will return an error.
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Process Graphs

 How many different sequences can be printed?

int main(void) {
int status;
if (fork() == 0) {

pid_t pid = fork();
printf("Child: %d\n", getpid());
if (pid == 0) {

exit(0);
}
// Continues execution...

}
pid_t pid = wait(&status);
printf("Parent: %d\n", pid);
exit(0);

}
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Process Graphs

 How many different sequences can be printed?

int main(void) {
int status;
if (fork() == 0) {

pid_t pid = fork();
printf("Child: %d\n", getpid());
if (pid == 0) {

exit(0);
}
// Continues execution...

}
pid_t pid = wait(&status);
printf("Parent: %d\n", pid);
exit(0);

}

Two different 
sequences. See the 
process graph on 
the next slide.
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Process Diagram

fork

fork print

print exit

wait print exit

wait print exit
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Process Graphs

 How many different lines are printed?

int main(void) {
char *tgt = "child";
pid_t pid = fork();
if (pid == 0) {

pid = getppid(); // Get parent pid
tgt = "parent";

}
kill(pid, SIGKILL);
printf("Sent SIGKILL to %s:%d\n", tgt, pid);
exit(0);

}



Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process Graphs

 How many different lines are printed?

int main(void) {
char *tgt = "child";
pid_t pid = fork();
if (pid == 0) {

pid = getppid(); // Get parent pid
tgt = "parent";

}
kill(pid, SIGKILL);
printf("Sent SIGKILL to %s:%d\n", tgt, pid);
exit(0);

} Anywhere from 0-2 lines. The parent 
and child try to terminate each other.



Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signals and Handling

 Signals can happen at any time
▪ Control when through blocking signals

 Signals also communicate that events have occurred
▪ What event(s) correspond to each signal?

 Write separate routines for receiving (i.e., signals)
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Counting with signals

 Will this code terminate?

volatile int counter = 0;
void handler(int sig) { counter++; }

int main(void) {
signal(SIGCHLD, handler);
for (int i = 0; i < 10; i++) {

if (fork() == 0) { exit(0); }
}
while (counter < 10) {

mine_bitcoin();
}
return 0;

}
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Counting with signals

 Will this code terminate?

volatile int counter = 0;
void handler(int sig) { counter++; }

int main(void) {
signal(SIGCHLD, handler);
for (int i = 0; i < 10; i++) {

if (fork() == 0) { exit(0); }
}
while (counter < 10) {

mine_bitcoin();
}
return 0;

} It might not, since 
signals can coalesce.

(Don't use signal, use 
Signal or sigaction
instead!)

(Don't busy-wait, use 
sigsuspend instead!)
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Proper signal handling

 How can we fix the previous code?
▪ Remember that signals will be coalesced, so the number of times a 

signal handler has executed is not necessarily the same as number 
of times a signal was sent.

▪ We need some other way to count the number of children.
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Proper signal handling

 How can we fix the previous code?
▪ Remember that signals will be coalesced, so the number of times a 

signal handler has executed is not necessarily the same as number 
of times a signal was sent.

▪ We need some other way to count the number of children.

void handler(int sig) {
pid_t pid;
while ((pid = waitpid(-1, NULL, WNOHANG)) > 0) {

counter++;
}

}

(This instruction isn't atomic. Why
won't there be a race condition?)
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If you get stuck

 Read the writeup!

 Do manual unit testing before runtrace and sdriver!

 Read the writeup!

 Post private questions on Piazza!

 Think carefully about error conditions.
▪ Read the man pages for each syscall when in doubt.

▪ What errors can each syscall return?

▪ How should the errors be handled?
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Appendix: Blocking signals

 Surround blocks of code with calls to sigprocmask.
▪ Use SIG_BLOCK to block signals at the start.

▪ Use SIG_SETMASK to restore the previous signal mask at the end.

 Don't use SIG_UNBLOCK.
▪ We don't want to unblock a signal if it was already blocked.

▪ This allows us to nest this procedure multiple times.

sigset_t mask, prev;
sigemptyset(&mask, SIGINT);
sigaddset(&mask, SIGINT);
sigprocmask(SIG_BLOCK, &mask, &prev);
// ...
sigprocmask(SIG_SETMASK, &prev, NULL);
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Appendix: Errno

 Global integer variable used to store an error code.
▪ Its value is set when a system call fails.

▪ Only examine its value when the system call's return code indicates 
that an error has occurred!

▪ Be careful not to call make other system calls before checking the 
value of errno!

 Lets you know why a system call failed.
▪ Use functions like strerror, perror to get error messages.

 Example: assume there is no “foo.txt” in our path
int fd = open("foo.txt", O_RDONLY);
if (fd < 0) perror("open");
// open: No such file or directory

#include <errno.h>
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Appendix: Writing signal handlers

 G1. Call only async-signal-safe functions in your handlers.
▪ Do not call printf, sprintf, malloc, exit! Doing so can cause 

deadlocks, since these functions may require global locks.

▪ We've provided you with sio_printf which you can use instead.

 G2. Save and restore errno on entry and exit.
▪ If not, the signal handler can corrupt code that tries to read errno.

▪ The driver will print a warning if errno is corrupted.

 G3. Temporarily block signals to protect shared data.
▪ This will prevent race conditions when writing to shared data.

 Avoid the use of global variables in tshlab.
▪ They are a source of pernicious race conditions!

▪ You do not need to declare any global variables to complete tshlab.

▪ Use the functions provided by tsh_helper.


