
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

15-213 Recitation 8
Processes, Signals, Tshlab

22 October 2018

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Outline

 Cachelab Style

 Process Lifecycle

 Signal Handling

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cachelab Style Grading

 Style grades will be available "soon"
▪ Click on your score to view feedback for each rubric item

▪ Make sure points are added correctly!

▪ File regrade requests on Piazza if we made a mistake.

 Common mistakes
▪ Missing descriptions at the top of your file and functions

▪ Error-checking for malloc and fopen

▪ Writing everything in main function without helpers.

▪ Lack of comments in general.

 Keep style in mind as you work on tshlab!

▪ Error-checking is particularly important to consider

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shell Lab

 Due date: next Tuesday (October 30th)

 Simulate a Linux-like shell with I/O redirection

 Review the writeup carefully.
▪ Review once before starting, and again when halfway through

▪ This will save you a lot of style points and a lot of grief!

 Read Chapter 8 in the textbook:
▪ Process lifecycle and signal handling

▪ How race conditions occur, and how to avoid them

▪ Be careful not to use code from the textbook without
understanding it first.

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process “Lifecycle”

 fork()
Create a duplicate, a “child”, of the process

 execve()
Replace the running program

 exit()
End the running program

 waitpid()
Wait for a child process to terminate

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Notes on Examples

 Full source code of all programs is available
▪ TAs may demo specific programs

 In the following examples, exit() is called
▪ We do this to be explicit about the program’s behavior

▪ Exit should generally be reserved for terminating on error

 Unless otherwise noted, assume all syscalls succeed
▪ Error checking code is omitted.

▪ Be careful to check errors when writing your own shell!

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processes are separate

 How many lines are printed?

 If pid is at address 0x7fff2bcc264c, what is printed?

int main(void) {
pid_t pid;
pid = fork();
printf("%p - %d\n", &pid, pid);
exit(0);

}

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processes are separate

 How many lines are printed?

 If pid is at address 0x7fff2bcc264c, what is printed?

int main(void) {
pid_t pid;
pid = fork();
printf("%p - %d\n", &pid, pid);
exit(0);

} 0x7fff2bcc264c - 24750
0x7fff2bcc264c - 0

The order and the child's PID (printed by
the parent) may vary, but the address will
be the same in the parent and child.

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processes Change

 What does this program print?

int main(void) {
char *args[3] = {

"/bin/echo", "Hi 18213!", NULL
};
execv(args[0], args);
printf("Hi 15213!\n");
exit(0);

}

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processes Change

 What does this program print?

int main(void) {
char *args[3] = {

"/bin/echo", "Hi 18213!", NULL
};
execv(args[0], args);
printf("Hi 15213!\n");
exit(0);

}

Hi 18213!

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processes Change

 What about this program? What does it print?

int main(void) {
char *args[3] = {

"/bin/blahblah", "Hi 15513!", NULL
};
execv(args[0], args);
printf("Hi 14513!\n");
exit(0);

}

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processes Change

 What about this program? What does it print?

int main(void) {
char *args[3] = {

"/bin/blahblah", "Hi 15513!", NULL
};
execv(args[0], args);
printf("Hi 14513!\n");
exit(0);

}

Hi 14513!

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

On Error

 What should we do if malloc fails?

const size_t HUGE = 1 * 1024 * 1024 * 1024;
int main(void) {

char *buf = malloc(HUGE * HUGE);

printf("Buf at %p\n", buf);
free(buf);
exit(0);

}

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

On Error

 What should we do if malloc fails?

const size_t HUGE = 1 * 1024 * 1024 * 1024;
int main(void) {

char *buf = malloc(HUGE * HUGE);

printf("Buf at %p\n", buf);
free(buf);
exit(0);

}

if (buf == NULL) {
fprintf(stderr, "Failure at %u\n", __LINE__);
exit(1);

}

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exit values can convey information

 Two values are printed. Are they related?

int main(void) {
pid_t pid = fork();
if (pid == 0) { exit(getpid()); }
else {

int status = 0;
waitpid(pid, &status, 0);
printf("0x%x exited with 0x%x\n", pid,

WEXITSTATUS(status));
}
exit(0);

}

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exit values can convey information

 Two values are printed. Are they related?

int main(void) {
pid_t pid = fork();
if (pid == 0) { exit(getpid()); }
else {

int status = 0;
waitpid(pid, &status, 0);
printf("0x%x exited with 0x%x\n", pid,

WEXITSTATUS(status));
}
exit(0);

} 0x7b54 exited with 0x54

They're the same!... almost.
Exit codes are only one byte in size.

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processes have ancestry

 What's wrong with this code? (assume that fork succeeds)

int main(void) {
int status = 0, ret = 0;
pid_t pid = fork();
if (pid == 0) {

pid = fork();
exit(getpid());

}

ret = waitpid(-1, &status, 0);
printf("Process %d exited with %d\n", ret, status);

ret = waitpid(-1, &status, 0);
printf("Process %d exited with %d\n", ret, status);
exit(0);

}

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processes have ancestry

 What's wrong with this code? (assume that fork succeeds)

int main(void) {
int status = 0, ret = 0;
pid_t pid = fork();
if (pid == 0) {

pid = fork();
exit(getpid());

}

ret = waitpid(-1, &status, 0);
printf("Process %d exited with %d\n", ret, status);

ret = waitpid(-1, &status, 0);
printf("Process %d exited with %d\n", ret, status);
exit(0);

}

waitpid will reap only
children, not grandchildren,
so the second waitpid call
will return an error.

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process Graphs

 How many different sequences can be printed?

int main(void) {
int status;
if (fork() == 0) {

pid_t pid = fork();
printf("Child: %d\n", getpid());
if (pid == 0) {

exit(0);
}
// Continues execution...

}
pid_t pid = wait(&status);
printf("Parent: %d\n", pid);
exit(0);

}

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process Graphs

 How many different sequences can be printed?

int main(void) {
int status;
if (fork() == 0) {

pid_t pid = fork();
printf("Child: %d\n", getpid());
if (pid == 0) {

exit(0);
}
// Continues execution...

}
pid_t pid = wait(&status);
printf("Parent: %d\n", pid);
exit(0);

}

Two different
sequences. See the
process graph on
the next slide.

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process Diagram

fork

fork print

print exit

wait print exit

wait print exit

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process Graphs

 How many different lines are printed?

int main(void) {
char *tgt = "child";
pid_t pid = fork();
if (pid == 0) {

pid = getppid(); // Get parent pid
tgt = "parent";

}
kill(pid, SIGKILL);
printf("Sent SIGKILL to %s:%d\n", tgt, pid);
exit(0);

}

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process Graphs

 How many different lines are printed?

int main(void) {
char *tgt = "child";
pid_t pid = fork();
if (pid == 0) {

pid = getppid(); // Get parent pid
tgt = "parent";

}
kill(pid, SIGKILL);
printf("Sent SIGKILL to %s:%d\n", tgt, pid);
exit(0);

} Anywhere from 0-2 lines. The parent
and child try to terminate each other.

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signals and Handling

 Signals can happen at any time
▪ Control when through blocking signals

 Signals also communicate that events have occurred
▪ What event(s) correspond to each signal?

 Write separate routines for receiving (i.e., signals)

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Counting with signals

 Will this code terminate?

volatile int counter = 0;
void handler(int sig) { counter++; }

int main(void) {
signal(SIGCHLD, handler);
for (int i = 0; i < 10; i++) {

if (fork() == 0) { exit(0); }
}
while (counter < 10) {

mine_bitcoin();
}
return 0;

}

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Counting with signals

 Will this code terminate?

volatile int counter = 0;
void handler(int sig) { counter++; }

int main(void) {
signal(SIGCHLD, handler);
for (int i = 0; i < 10; i++) {

if (fork() == 0) { exit(0); }
}
while (counter < 10) {

mine_bitcoin();
}
return 0;

} It might not, since
signals can coalesce.

(Don't use signal, use
Signal or sigaction
instead!)

(Don't busy-wait, use
sigsuspend instead!)

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Proper signal handling

 How can we fix the previous code?
▪ Remember that signals will be coalesced, so the number of times a

signal handler has executed is not necessarily the same as number
of times a signal was sent.

▪ We need some other way to count the number of children.

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Proper signal handling

 How can we fix the previous code?
▪ Remember that signals will be coalesced, so the number of times a

signal handler has executed is not necessarily the same as number
of times a signal was sent.

▪ We need some other way to count the number of children.

void handler(int sig) {
pid_t pid;
while ((pid = waitpid(-1, NULL, WNOHANG)) > 0) {

counter++;
}

}

(This instruction isn't atomic. Why
won't there be a race condition?)

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

If you get stuck

 Read the writeup!

 Do manual unit testing before runtrace and sdriver!

 Read the writeup!

 Post private questions on Piazza!

 Think carefully about error conditions.
▪ Read the man pages for each syscall when in doubt.

▪ What errors can each syscall return?

▪ How should the errors be handled?

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Appendix: Blocking signals

 Surround blocks of code with calls to sigprocmask.
▪ Use SIG_BLOCK to block signals at the start.

▪ Use SIG_SETMASK to restore the previous signal mask at the end.

 Don't use SIG_UNBLOCK.
▪ We don't want to unblock a signal if it was already blocked.

▪ This allows us to nest this procedure multiple times.

sigset_t mask, prev;
sigemptyset(&mask, SIGINT);
sigaddset(&mask, SIGINT);
sigprocmask(SIG_BLOCK, &mask, &prev);
// ...
sigprocmask(SIG_SETMASK, &prev, NULL);

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Appendix: Errno

 Global integer variable used to store an error code.
▪ Its value is set when a system call fails.

▪ Only examine its value when the system call's return code indicates
that an error has occurred!

▪ Be careful not to call make other system calls before checking the
value of errno!

 Lets you know why a system call failed.
▪ Use functions like strerror, perror to get error messages.

 Example: assume there is no “foo.txt” in our path
int fd = open("foo.txt", O_RDONLY);
if (fd < 0) perror("open");
// open: No such file or directory

#include <errno.h>

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Appendix: Writing signal handlers

 G1. Call only async-signal-safe functions in your handlers.
▪ Do not call printf, sprintf, malloc, exit! Doing so can cause

deadlocks, since these functions may require global locks.

▪ We've provided you with sio_printf which you can use instead.

 G2. Save and restore errno on entry and exit.
▪ If not, the signal handler can corrupt code that tries to read errno.

▪ The driver will print a warning if errno is corrupted.

 G3. Temporarily block signals to protect shared data.
▪ This will prevent race conditions when writing to shared data.

 Avoid the use of global variables in tshlab.
▪ They are a source of pernicious race conditions!

▪ You do not need to declare any global variables to complete tshlab.

▪ Use the functions provided by tsh_helper.

