
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

14-513 18-613

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bits, Bytes, and Integers – Part 2

15-213/18-213/14-513/15-513/18-613: Introduction to Computer Systems
3rd Lecture, September 8, 2020

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Assignment Announcements

 Lab 0 available via course web page and Autolab.
▪ Due Thurs. Sept. 10, 11:59:59pm ET

▪ No grace days. No late submissions!

 Lab 1 available after 5 pm via Autolab
▪ Due Thurs, Sept. 17, 11:59:59pm ET

▪ Read instructions carefully: writeup, bits.c, tests.c

▪ Quirky software infrastructure

▪ Based on lectures 2, 3, and 4 (CS:APP Chapter 2)

▪ After today you will know everything for the integer problems

▪ Floating point covered Thursday Sept. 10

 In-Person Recitations
▪ We will email students with their in-person recitation status based

on the survey on Piazza (fill out before class 9/10 or be uncounted)

▪ First recitations (in-person and remote) are 9/14

https://autolab.andrew.cmu.edu/courses/15213-f16
https://autolab.andrew.cmu.edu/courses/15213-f16

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bootcamps

 Wednesday Sept 9 @ 7-9 pm ET
▪ GCC and Build Automation

 Friday Sept 11 @ 7-9 pm ET
▪ Debugging and GDB

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary From Last Lecture

 Representing information as bits

 Bit-level manipulations

 Integers
▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

 Representations in memory, pointers, strings

 Summary

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Encoding Integers

Two’s Complement Examples (w = 5)

B2T (X) = −xw−1 2
w−1

+ xi 2
i

i=0

w−2

B2U(X) = xi 2
i

i=0

w−1

Unsigned Two’s Complement

Sign Bit

10 =

-16 8 4 2 1

0 1 0 1 0

-10 =

-16 8 4 2 1

1 0 1 1 0

8+2 = 10

-16+4+2 = -10

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unsigned & Signed Numeric Values
 Equivalence

▪ Same encodings for nonnegative
values

 Uniqueness
▪ Every bit pattern represents

unique integer value

▪ Each representable integer has
unique bit encoding

 Expression containing signed
and unsigned int:
int is cast to unsigned

X B2T(X)B2U(X)

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

–88

–79

–610

–511

–412

–313

–214

–115

1000

1001

1010

1011

1100

1101

1110

1111

0

1

2

3

4

5

6

7

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sign Extension and Truncation

 Sign Extension

 Truncation

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Global Thermonuclear War

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Misunderstanding integers
can lead to the end of the
world as we know it!

 Thule (Qaanaaq), Greenland

 US DoD “Site J” Ballistic
Missile Early Warning
System (BMEWS)

 10/5/60: world nearly ends

 Missile radar echo: 1/8s

 BMEWS reports: 75s echo(!)

 1000s of objects reported

 NORAD alert level 5:
▪ Immediate incoming nuclear

attack!!!!

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Kruschev was in NYC 10/5/60 (weird time to attack)
▪ someone in Qaanaaq said “why not go check outside?”

 “Missiles” were actually THE MOON RISING OVER NORWAY

 Expected max distance: 3000 mi; Moon distance: .25M miles!

 .25M miles % sizeof(distance) = 2200mi.

 Overflow of distance nearly caused nuclear apocalypse!!

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

 Representations in memory, pointers, strings

 Summary

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unsigned Addition

 Standard Addition Function
▪ Ignores carry output

 Implements Modular Arithmetic
s = UAddw(u , v) = u + v mod 2w

• • •

• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits UAddw(u , v)

1110 1001

+ 1101 0101

1 1011 1110

1011 1110

E9

+ D5

1BE

BE

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

223

+ 213

446

190

unsigned char

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0
2

4
6

8
10

12
14

0

2

4

6

8

10

12

14

0

4

8

12

16

20

24

28

32

Integer Addition

Visualizing (Mathematical) Integer Addition

 Integer Addition
▪ 4-bit integers u, v

▪ Compute true sum
Add4(u , v)

▪ Values increase linearly
with u and v

▪ Forms planar surface

Add4(u , v)

u

v

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0
2

4
6

8
10

12
14

0

2

4

6

8

10

12

14

0

2

4

6

8

10

12

14

16

Visualizing Unsigned Addition

 Wraps Around
▪ If true sum ≥ 2w

▪ At most once

0

2w

2w+1

UAdd4(u , v)

u

v

True Sum

Modular Sum

Overflow

Overflow

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Two’s Complement Addition

 TAdd and UAdd have Identical Bit-Level Behavior
▪ Signed vs. unsigned addition in C:

int s, t, u, v;

s = (int) ((unsigned) u + (unsigned) v);

t = u + v

▪ Will give s == t

• • •

• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits TAddw(u , v)

1110 1001

+ 1101 0101

1 1011 1110

1011 1110

E9

+ D5

1BE

BE

-23

+ -43

-66

-66

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

TAdd Overflow

 Functionality
▪ True sum requires w+1

bits

▪ Drop off MSB

▪ Treat remaining bits as
2’s comp. integer

–2w –1

–2w

0

2w –1–1

2w–1

True Sum

TAdd Result

1 000…0

1 100…0

0 000…0

0 100…0

0 111…1

100…0

000…0

011…1

PosOver

NegOver

0 011…1

1 011…1

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

-8
-6

-4
-2

0
2

4
6

-8

-6

-4

-2

0

2

4

6

-8

-6

-4

-2

0

2

4

6

8

Visualizing 2’s Complement Addition

 Values
▪ 4-bit two’s comp.

▪ Range from -8 to +7

 Wraps Around

▪ If sum 2w–1

▪ Becomes negative

▪ At most once

▪ If sum < –2w–1

▪ Becomes positive

▪ At most once

TAdd4(u , v)

u

v

PosOver

NegOver

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Characterizing TAdd

 Functionality
▪ True sum requires w+1 bits

▪ Drop off MSB

▪ Treat remaining bits as 2’s
comp. integer

TAddw (u,v) =

u + v + 2
w−1

u + v TMinw

u + v TMinw u + v TMaxw

u + v − 2
w−1

TMaxw u + v

(NegOver)

(PosOver)

u

v

< 0 > 0

< 0

> 0

Negative Overflow

Positive Overflow

TAdd(u , v)

2w

2w

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiplication

 Goal: Computing Product of w-bit numbers x, y
▪ Either signed or unsigned

 But, exact results can be bigger than w bits
▪ Unsigned: up to 2w bits

▪ Result range: 0 ≤ x * y ≤ (2w – 1) 2 = 22w – 2w+1 + 1

▪ Two’s complement min (negative): Up to 2w-1 bits

▪ Result range: x * y ≥ (–2w–1)*(2w–1–1) = –22w–2 + 2w–1

▪ Two’s complement max (positive): Up to 2w bits, but only for (TMinw)2

▪ Result range: x * y ≤ (–2w–1) 2 = 22w–2

 So, maintaining exact results…
▪ would need to keep expanding word size with each product computed

▪ is done in software, if needed

▪ e.g., by “arbitrary precision” arithmetic packages

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unsigned Multiplication in C

 Standard Multiplication Function
▪ Ignores high order w bits

 Implements Modular Arithmetic
UMultw(u , v)= u · v mod 2w

• • •

• • •

u

v*

• • •u · v

• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
UMultw(u , v)

• • •

1110 1001

* 1101 0101

1100 0001 1101 1101

1101 1101

E9

* D5

C1DD

DD

233

* 213

49629

221

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signed Multiplication in C

 Standard Multiplication Function
▪ Ignores high order w bits

▪ Some of which are different for signed
vs. unsigned multiplication

▪ Lower bits are the same

• • •

• • •

u

v*

• • •u · v

• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
TMultw(u , v)

• • •

-23

* -43

989

-35

1110 1001

* 1101 0101

0000 0011 1101 1101

1101 1101

E9

* D5

03DD

DD

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Power-of-2 Multiply with Shift

 Operation
▪ u << k gives u * 2k

▪ Both signed and unsigned

 Examples
▪ u << 3 == u * 8

▪ (u << 5) – (u << 3)== u * 24

▪ Most machines shift and add faster than multiply

▪ Compiler generates this code automatically

• • •

0 0 1 0 0 0•••

u

2k*

u · 2kTrue Product: w+k bits

Operands: w bits

Discard k bits: w bits UMultw(u , 2k)

•••

k

• • • 0 0 0•••

TMultw(u , 2k)

0 0 0••••••

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unsigned Power-of-2 Divide with Shift

 Quotient of Unsigned by Power of 2
▪ u >> k gives u / 2k

▪ Uses logical shift

 Division Computed Hex Binary
x 15213 15213 3B 6D 00111011 01101101

x >> 1 7606.5 7606 1D B6 00011101 10110110

x >> 4 950.8125 950 03 B6 00000011 10110110

x >> 8 59.4257813 59 00 3B 00000000 00111011

0 0 1 0 0 0•••

u

2k/

u / 2kDivision:

Operands:
•••

k
••• •••

•••0 0 0••• •••

 u / 2k •••Result:

.

Binary Point

0

0 0 0•••0

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signed Power-of-2 Divide with Shift

 Quotient of Signed by Power of 2
▪ x >> k gives x / 2k

▪ Uses arithmetic shift

▪ Rounds wrong direction when x < 0

0 0 1 0 0 0•••

x

2k/

x / 2kDivision:

Operands:
•••

k
••• •••

•••0 ••• •••

RoundDown(x / 2k) •••Result:

.

Binary Point

0 •••

 Division Computed Hex Binary
x -15213 -15213 C4 93 11000100 10010011

x >> 1 -7606.5 -7607 E2 49 11100010 01001001

x >> 4 -950.8125 -951 FC 49 11111100 01001001

x >> 8 -59.4257813 -60 FF C4 11111111 11000100

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Correct Power-of-2 Divide

 Quotient of Negative Number by Power of 2
▪ Want x / 2k (Round Toward 0)

▪ Compute as (x+2k-1)/ 2k

▪ In C: (x + (1<<k)-1) >> k

▪ Biases dividend toward 0

Case 1: No rounding

Divisor:

Dividend:

0 0 1 0 0 0•••

u

2k/

 u / 2k

•••

k
1 ••• 0 0 0•••

1 •••0 1 1••• .

Binary Point

1

0 0 0 1 1 1•••+2k –1 •••

1 1 1•••

1 ••• 1 1 1•••

Biasing has no effect

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Correct Power-of-2 Divide (Cont.)

Divisor:

Dividend:

Case 2: Rounding

0 0 1 0 0 0•••

x

2k/

 x / 2k

•••

k
1 ••• •••

1 •••0 1 1••• .

Binary Point

1

0 0 0 1 1 1•••+2k –1 •••

1 ••• •••

Biasing adds 1 to final result

•••

Incremented by 1

Incremented by 1

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Negation: Complement & Increment

 Negate through complement and increase
~x + 1 == -x

 Example
▪ Observation: ~x + x == 1111…111 == -1

1 0 0 1 0 11 1x

0 1 1 0 1 00 0~x+

1 1 1 1 1 11 1-1

 Decimal Hex Binary
x 15213 3B 6D 00111011 01101101

~x -15214 C4 92 11000100 10010010

~x+1 -15213 C4 93 11000100 10010011

y -15213 C4 93 11000100 10010011

x = 15213

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Complement & Increment Examples

 Decimal Hex Binary
x -32768 80 00 10000000 00000000

~x 32767 7F FF 01111111 11111111

~x+1 -32768 80 00 10000000 00000000

x = TMin

 Decimal Hex Binary
0 0 00 00 00000000 00000000

~0 -1 FF FF 11111111 11111111

~0+1 0 00 00 00000000 00000000

x = 0

Canonical counter example

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

▪ Summary

 Representations in memory, pointers, strings

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Arithmetic: Basic Rules

 Addition:
▪ Unsigned/signed: Normal addition followed by truncate,

same operation on bit level

▪ Unsigned: addition mod 2w

▪ Mathematical addition + possible subtraction of 2w

▪ Signed: modified addition mod 2w (result in proper range)

▪ Mathematical addition + possible addition or subtraction of 2w

 Multiplication:
▪ Unsigned/signed: Normal multiplication followed by truncate,

same operation on bit level

▪ Unsigned: multiplication mod 2w

▪ Signed: modified multiplication mod 2w (result in proper range)

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Quiz Time!

Check out:

https://canvas.cmu.edu/courses/17808

https://canvas.cmu.edu/courses/17808

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

▪ Summary

 Representations in memory, pointers, strings

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte-Oriented Memory Organization

 Programs refer to data by address
▪ Conceptually, envision it as a very large array of bytes

▪ In reality, it’s not, but can think of it that way

▪ An address is like an index into that array

▪ and, a pointer variable stores an address

 Note: system provides private address spaces to each “process”
▪ Think of a process as a program being executed

▪ So, a program can clobber its own data, but not that of others

• • •

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Machine Words

 Any given computer has a “Word Size”
▪ Nominal size of integer-valued data

▪ and of addresses

▪ Until recently, most machines used 32 bits (4 bytes) as word size

▪ Limits addresses to 4GB (232 bytes)

▪ Increasingly, machines have 64-bit word size

▪ Potentially, could have 18 EB (exabytes) of addressable memory

▪ That’s 18.4 X 1018

▪ Machines still support multiple data formats

▪ Fractions or multiples of word size

▪ Always integral number of bytes

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Word-Oriented Memory Organization

 Addresses Specify Byte
Locations
▪ Address of first byte in word

▪ Addresses of successive words differ
by 4 (32-bit) or 8 (64-bit)

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

0010

0011

32-bit

Words
Bytes Addr.

0012

0013

0014

0015

64-bit

Words

Addr

=
??

Addr

=
??

Addr

=
??

Addr

=
??

Addr

=
??

Addr

=
??

0000

0004

0008

0012

0000

0008

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example Data Representations

C Data Type Typical 32-bit Typical 64-bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

float 4 4 4

double 8 8 8

pointer 4 8 8

Carnegie Mellon

43Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte Ordering

 So, how are the bytes within a multi-byte word ordered in
memory?

 Conventions
▪ Big Endian: Sun (Oracle SPARC), PPC Mac, Internet

▪ Least significant byte has highest address

▪ Little Endian: x86, ARM processors running Android, iOS, and Linux

▪ Least significant byte has lowest address

Carnegie Mellon

44Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte Ordering Example

 Example
▪ Variable x has 4-byte value of 0x01234567

▪ Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01

Carnegie Mellon

45Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Representing Integers
Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

6D

3B

00

00

IA32, x86-64

3B

6D

00

00

Sun

int A = 15213;

93

C4

FF

FF

IA32, x86-64

C4

93

FF

FF

Sun

Two’s complement representation

int B = -15213;

long int C = 15213;

00

00

00

00

6D

3B

00

00

x86-64

3B

6D

00

00

Sun

6D

3B

00

00

IA32

In
cr

e
as

in
g

ad
d

re
ss

e
s

Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Examining Data Representations

 Code to Print Byte Representation of Data
▪ Casting pointer to unsigned char * allows treatment as a byte array

Printf directives:
%p: Print pointer
%x: Print Hexadecimal

typedef unsigned char *pointer;

void show_bytes(pointer start, size_t len){

size_t i;

for (i = 0; i < len; i++)

printf(”%p\t0x%.2x\n",start+i, start[i]);

printf("\n");

}

Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

show_bytes Execution Example

int a = 15213;

printf("int a = 15213;\n");

show_bytes((pointer) &a, sizeof(int));

Result (Linux x86-64):

int a = 15213;

0x7fffb7f71dbc 6d

0x7fffb7f71dbd 3b

0x7fffb7f71dbe 00

0x7fffb7f71dbf 00

Carnegie Mellon

48Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Representing Pointers

Different compilers & machines assign different locations to objects

Even get different results each time run program

int B = -15213;

int *P = &B;

x86-64Sun IA32

EF

FF

FB

2C

AC

28

F5

FF

3C

1B

FE

82

FD

7F

00

00

Carnegie Mellon

49Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

char S[6] = "18213";

Representing Strings

 Strings in C
▪ Represented by array of characters

▪ Each character encoded in ASCII format

▪ Standard 7-bit encoding of character set

▪ Character “0” has code 0x30

– Digit i has code 0x30+i

▪ String should be null-terminated

▪ Final character = 0

 Compatibility
▪ Byte ordering not an issue

IA32 Sun

31

38

32

31

33

00

31

38

32

31

33

00

Carnegie Mellon

50Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Address Instruction Code Assembly Rendition

8048365: 5b pop %ebx

8048366: 81 c3 ab 12 00 00 add $0x12ab,%ebx

804836c: 83 bb 28 00 00 00 00 cmpl $0x0,0x28(%ebx)

Reading Byte-Reversed Listings

 Disassembly
▪ Text representation of binary machine code

▪ Generated by program that reads the machine code

 Example Fragment

 Deciphering Numbers
▪ Value: 0x12ab

▪ Pad to 32 bits: 0x000012ab

▪ Split into bytes: 00 00 12 ab

▪ Reverse: ab 12 00 00

Carnegie Mellon

52Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary

 Representing information as bits

 Bit-level manipulations

 Integers
▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

 Representations in memory, pointers, strings

 Summary

