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Assignment Announcements

 Lab 0 available via course web page and Autolab.
▪ Due Thurs. Sept. 10, 11:59:59pm ET

▪ No grace days. No late submissions! 

 Lab 1 available after 5 pm via Autolab 
▪ Due Thurs, Sept. 17, 11:59:59pm ET

▪ Read instructions carefully: writeup, bits.c, tests.c

▪ Quirky software infrastructure

▪ Based on lectures 2, 3, and 4 (CS:APP Chapter 2)

▪ After today you will know everything for the integer problems

▪ Floating point covered Thursday Sept. 10

 In-Person Recitations
▪ We will email students with their in-person recitation status based 

on the survey on Piazza (fill out before class 9/10 or be uncounted)

▪ First recitations (in-person and remote) are 9/14

https://autolab.andrew.cmu.edu/courses/15213-f16
https://autolab.andrew.cmu.edu/courses/15213-f16


Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bootcamps

 Wednesday Sept 9 @ 7-9 pm ET
▪ GCC and Build Automation

 Friday Sept 11 @ 7-9 pm ET
▪ Debugging and GDB
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Summary From Last Lecture

 Representing information as bits

 Bit-level manipulations

 Integers
▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

 Representations in memory, pointers, strings

 Summary
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Encoding Integers

Two’s Complement Examples (w = 5)

B2T (X ) = −xw−1 2
w−1

+ xi 2
i

i=0

w−2

B2U(X ) = xi 2
i

i=0

w−1



Unsigned Two’s Complement

Sign Bit

10 = 

-16 8 4 2 1

0 1 0 1 0

-10 = 

-16 8 4 2 1

1 0 1 1 0

8+2 = 10

-16+4+2 = -10
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Unsigned & Signed Numeric Values
 Equivalence

▪ Same encodings for nonnegative 
values

 Uniqueness
▪ Every bit pattern represents 

unique integer value

▪ Each representable integer has 
unique bit encoding

 Expression containing signed 
and unsigned int:
int is cast to unsigned

X B2T(X)B2U(X)

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

–88

–79

–610

–511

–412

–313

–214

–115

1000

1001

1010

1011

1100

1101

1110

1111

0

1

2

3

4

5

6

7
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Sign Extension and Truncation

 Sign Extension

 Truncation
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Global Thermonuclear War
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 Misunderstanding integers 
can lead to the end of the  
world as we know it!

 Thule (Qaanaaq), Greenland

 US DoD “Site J” Ballistic 
Missile Early Warning 
System (BMEWS)

 10/5/60: world nearly ends

 Missile radar echo: 1/8s

 BMEWS reports: 75s echo(!)

 1000s of objects reported

 NORAD alert level 5:
▪ Immediate incoming nuclear 

attack!!!!   
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 Kruschev was in NYC 10/5/60 (weird time to attack)
▪ someone in Qaanaaq said “why not go check outside?”

 “Missiles” were actually THE MOON RISING OVER NORWAY

 Expected max distance: 3000 mi;  Moon distance: .25M miles!

 .25M miles % sizeof(distance) = 2200mi.

 Overflow of distance nearly caused nuclear apocalypse!!
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Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

 Representations in memory, pointers, strings

 Summary
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Unsigned Addition

 Standard Addition Function
▪ Ignores carry output

 Implements Modular Arithmetic
s = UAddw(u , v) = u + v mod 2w

• • •

• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits UAddw(u , v)

1110 1001

+  1101 0101

1 1011 1110

1011 1110

E9

+ D5

1BE

BE

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

223

+ 213

446

190

unsigned char
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0
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14

0

4

8

12

16

20

24

28

32

Integer Addition

Visualizing (Mathematical) Integer Addition

 Integer Addition
▪ 4-bit integers u, v

▪ Compute true sum 
Add4(u , v)

▪ Values increase linearly 
with u and v

▪ Forms planar surface

Add4(u , v)

u

v
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0
2

4
6

8
10

12
14

0

2

4

6

8

10

12

14

0

2

4

6

8

10

12

14

16

Visualizing Unsigned Addition

 Wraps Around
▪ If true sum ≥ 2w

▪ At most once

0

2w

2w+1

UAdd4(u , v)

u

v

True Sum

Modular Sum

Overflow

Overflow



Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Two’s Complement Addition

 TAdd and UAdd have Identical Bit-Level Behavior
▪ Signed vs. unsigned addition in C:

int s, t, u, v;

s = (int) ((unsigned) u + (unsigned) v);

t = u + v

▪ Will give s == t

• • •

• • •

u

v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits TAddw(u , v)

1110 1001

+  1101 0101

1 1011 1110

1011 1110

E9

+ D5

1BE

BE

-23

+ -43

-66

-66
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TAdd Overflow

 Functionality
▪ True sum requires w+1

bits

▪ Drop off MSB

▪ Treat remaining bits as 
2’s comp. integer

–2w –1

–2w

0

2w –1–1

2w–1

True Sum

TAdd Result

1 000…0

1 100…0

0 000…0

0 100…0

0 111…1

100…0

000…0

011…1

PosOver

NegOver

0 011…1

1 011…1
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-8
-6

-4
-2

0
2

4
6

-8

-6

-4

-2

0

2

4

6

-8

-6

-4

-2

0

2

4

6

8

Visualizing 2’s Complement Addition

 Values
▪ 4-bit two’s comp.

▪ Range from -8 to +7

 Wraps Around

▪ If sum  2w–1

▪ Becomes negative

▪ At most once

▪ If sum < –2w–1

▪ Becomes positive

▪ At most once

TAdd4(u , v)

u

v

PosOver

NegOver
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Characterizing TAdd

 Functionality
▪ True sum requires w+1 bits

▪ Drop off MSB

▪ Treat remaining bits as 2’s 
comp. integer

TAddw (u,v) =

u + v + 2
w−1

u + v  TMinw

u + v TMinw  u + v  TMaxw

u + v − 2
w−1

TMaxw  u + v

 

 
 

 
 

(NegOver)

(PosOver)

u

v

< 0 > 0

< 0

> 0

Negative Overflow

Positive Overflow

TAdd(u , v)

2w

2w
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Multiplication

 Goal: Computing Product of w-bit numbers x, y
▪ Either signed or unsigned

 But, exact results can be bigger than w bits
▪ Unsigned: up to 2w bits

▪ Result range: 0 ≤ x * y ≤ (2w – 1) 2 =  22w – 2w+1 + 1

▪ Two’s complement min (negative): Up to 2w-1 bits

▪ Result range: x * y ≥ (–2w–1)*(2w–1–1)  =  –22w–2 + 2w–1

▪ Two’s complement max (positive): Up to 2w bits, but only for (TMinw)2

▪ Result range: x * y ≤ (–2w–1) 2 =  22w–2

 So, maintaining exact results…
▪ would need to keep expanding word size with each product computed

▪ is done in software, if needed

▪ e.g., by “arbitrary precision” arithmetic packages
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Unsigned Multiplication in C

 Standard Multiplication Function
▪ Ignores high order w bits

 Implements Modular Arithmetic
UMultw(u , v)= u · v mod 2w

• • •

• • •

u

v*

• • •u · v

• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
UMultw(u , v)

• • •

1110 1001

*          1101 0101

1100 0001 1101 1101

1101 1101

E9

*  D5

C1DD

DD

233

*   213

49629

221
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Signed Multiplication in C

 Standard Multiplication Function
▪ Ignores high order w bits

▪ Some of which are different for signed 
vs. unsigned multiplication

▪ Lower bits are the same

• • •

• • •

u

v*

• • •u · v

• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w bits
TMultw(u , v)

• • •

-23

*   -43

989

-35

1110 1001

*          1101 0101

0000 0011 1101 1101

1101 1101

E9

*  D5

03DD

DD
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Power-of-2 Multiply with Shift

 Operation
▪ u << k gives u * 2k

▪ Both signed and unsigned

 Examples
▪ u << 3 == u * 8

▪ (u << 5) – (u << 3)== u * 24

▪ Most machines shift and add faster than multiply

▪ Compiler generates this code automatically

• • •

0 0 1 0 0 0•••

u

2k*

u · 2kTrue Product: w+k bits

Operands: w bits

Discard k bits: w bits UMultw(u , 2k)

•••

k

• • • 0 0 0•••

TMultw(u , 2k)

0 0 0••••••
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Unsigned Power-of-2 Divide with Shift

 Quotient of Unsigned by Power of 2
▪ u >> k gives   u / 2k 

▪ Uses logical shift

 Division Computed Hex Binary 
x 15213 15213 3B 6D 00111011 01101101 

x >> 1 7606.5 7606 1D B6 00011101 10110110 

x >> 4 950.8125 950 03 B6 00000011 10110110 

x >> 8 59.4257813 59 00 3B 00000000 00111011 
 

0 0 1 0 0 0•••

u

2k/

u / 2kDivision: 

Operands:
•••

k
••• •••

•••0 0 0••• •••

 u / 2k  •••Result:

.

Binary Point

0

0 0 0•••0
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Signed Power-of-2 Divide with Shift

 Quotient of Signed by Power of 2
▪ x >> k gives   x / 2k 

▪ Uses arithmetic shift

▪ Rounds wrong direction when x < 0

0 0 1 0 0 0•••

x

2k/

x / 2kDivision: 

Operands:
•••

k
••• •••

•••0 ••• •••

RoundDown(x / 2k) •••Result:

.

Binary Point

0 •••

 Division Computed Hex Binary 
x -15213 -15213 C4 93 11000100 10010011 

x >> 1 -7606.5 -7607 E2 49  11100010 01001001 

x >> 4 -950.8125 -951 FC 49 11111100 01001001 

x >> 8 -59.4257813 -60 FF C4 11111111 11000100 
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Correct Power-of-2 Divide

 Quotient of Negative Number by Power of 2
▪ Want   x / 2k  (Round Toward 0)

▪ Compute as   (x+2k-1)/ 2k 

▪ In C: (x + (1<<k)-1) >> k

▪ Biases dividend toward 0

Case 1: No rounding

Divisor: 

Dividend:

0 0 1 0 0 0•••

u

2k/

 u / 2k 

•••

k
1 ••• 0 0 0•••

1 •••0 1 1••• .

Binary Point

1

0 0 0 1 1 1•••+2k –1 •••

1 1 1•••

1 ••• 1 1 1•••

Biasing has no effect
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Correct Power-of-2 Divide (Cont.)

Divisor: 

Dividend:

Case 2: Rounding

0 0 1 0 0 0•••

x

2k/

 x / 2k 

•••

k
1 ••• •••

1 •••0 1 1••• .

Binary Point

1

0 0 0 1 1 1•••+2k –1 •••

1 ••• •••

Biasing adds 1 to final result

•••

Incremented by 1

Incremented by 1
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Negation: Complement & Increment

 Negate through complement and increase
~x + 1 == -x

 Example
▪ Observation: ~x + x == 1111…111 == -1

1 0 0 1 0 11 1x

0 1 1 0 1 00 0~x+

1 1 1 1 1 11 1-1

 Decimal Hex Binary 
x 15213 3B 6D 00111011 01101101 

~x -15214 C4 92 11000100 10010010 

~x+1 -15213 C4 93 11000100 10010011 

y -15213 C4 93 11000100 10010011 
 

x = 15213
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Complement & Increment Examples

 Decimal Hex Binary 
x -32768 80 00 10000000 00000000 

~x 32767 7F FF 01111111 11111111 

~x+1 -32768 80 00 10000000 00000000 
 

x = TMin

 Decimal Hex Binary 
0 0 00 00 00000000 00000000 

~0 -1 FF FF 11111111 11111111 

~0+1 0 00 00 00000000 00000000 
 

x = 0

Canonical counter example
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Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

▪ Summary

 Representations in memory, pointers, strings
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Arithmetic: Basic Rules

 Addition:
▪ Unsigned/signed: Normal addition followed by truncate,

same operation on bit level

▪ Unsigned: addition mod 2w

▪ Mathematical addition + possible subtraction of 2w

▪ Signed: modified addition mod 2w (result in proper range)

▪ Mathematical addition + possible addition or subtraction of 2w

 Multiplication:
▪ Unsigned/signed: Normal multiplication followed by truncate, 

same operation on bit level

▪ Unsigned: multiplication mod 2w

▪ Signed: modified multiplication mod 2w (result in proper range)
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Quiz Time!

Check out:

https://canvas.cmu.edu/courses/17808

https://canvas.cmu.edu/courses/17808
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Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

▪ Summary

 Representations in memory, pointers, strings
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Byte-Oriented Memory Organization

 Programs refer to data by address
▪ Conceptually, envision it as a very large array of bytes

▪ In reality, it’s not, but can think of it that way

▪ An address is like an index into that array

▪ and, a pointer variable stores an address

 Note: system provides private address spaces to each “process”
▪ Think of a process as a program being executed

▪ So, a program can clobber its own data, but not that of others

• • •
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Machine Words

 Any given computer has a “Word Size”
▪ Nominal size of integer-valued data

▪ and of addresses

▪ Until recently, most machines used 32 bits (4 bytes) as word size

▪ Limits addresses to 4GB (232 bytes)

▪ Increasingly, machines have 64-bit word size

▪ Potentially, could have 18 EB (exabytes) of addressable memory

▪ That’s 18.4 X 1018

▪ Machines still support multiple data formats

▪ Fractions or multiples of word size

▪ Always integral number of bytes
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Word-Oriented Memory Organization

 Addresses Specify Byte 
Locations
▪ Address of first byte in word

▪ Addresses of successive words differ 
by 4 (32-bit) or 8 (64-bit)

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

0010

0011

32-bit

Words
Bytes Addr.

0012

0013

0014

0015

64-bit

Words

Addr 

=
??

Addr 

=
??

Addr 

=
??

Addr 

=
??

Addr 

=
??

Addr 

=
??

0000

0004

0008

0012

0000

0008
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Example Data Representations

C Data Type Typical 32-bit Typical 64-bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

float 4 4 4

double 8 8 8

pointer 4 8 8
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Byte Ordering

 So, how are the bytes within a multi-byte word ordered in 
memory?

 Conventions
▪ Big Endian: Sun (Oracle SPARC), PPC Mac, Internet

▪ Least significant byte has highest address

▪ Little Endian: x86, ARM processors running Android, iOS, and Linux

▪ Least significant byte has lowest address
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Byte Ordering Example

 Example
▪ Variable x has 4-byte value of 0x01234567

▪ Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01
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Representing Integers
Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3    B    6    D

6D

3B

00

00

IA32, x86-64

3B

6D

00

00

Sun

int A = 15213;

93

C4

FF

FF

IA32, x86-64

C4

93

FF

FF

Sun

Two’s complement representation

int B = -15213;

long int C = 15213;

00

00

00

00

6D

3B

00

00

x86-64

3B

6D

00

00

Sun

6D

3B

00

00

IA32

In
cr

e
as

in
g 

ad
d

re
ss

e
s
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Examining Data Representations

 Code to Print Byte Representation of Data
▪ Casting pointer to unsigned char * allows treatment as a byte array

Printf directives:
%p: Print pointer
%x: Print Hexadecimal

typedef unsigned char *pointer;

void show_bytes(pointer start, size_t len){

size_t i;

for (i = 0; i < len; i++)

printf(”%p\t0x%.2x\n",start+i, start[i]);

printf("\n");

}
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show_bytes Execution Example

int a = 15213;

printf("int a = 15213;\n");

show_bytes((pointer) &a, sizeof(int));

Result (Linux x86-64):

int a = 15213;

0x7fffb7f71dbc 6d

0x7fffb7f71dbd 3b

0x7fffb7f71dbe 00

0x7fffb7f71dbf 00
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Representing Pointers

Different compilers & machines assign different locations to objects

Even get different results each time run program

int B = -15213;

int *P = &B;

x86-64Sun IA32

EF

FF

FB

2C

AC

28

F5

FF

3C

1B

FE

82

FD

7F

00

00
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char S[6] = "18213";

Representing Strings

 Strings in C
▪ Represented by array of characters

▪ Each character encoded in ASCII format

▪ Standard 7-bit encoding of character set

▪ Character “0” has code 0x30

– Digit i has code 0x30+i

▪ String should be null-terminated

▪ Final character = 0

 Compatibility
▪ Byte ordering not an issue

IA32 Sun

31

38

32

31

33

00

31

38

32

31

33

00
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Address Instruction Code Assembly Rendition

8048365: 5b                   pop    %ebx

8048366: 81 c3 ab 12 00 00    add    $0x12ab,%ebx

804836c: 83 bb 28 00 00 00 00 cmpl   $0x0,0x28(%ebx)

Reading Byte-Reversed Listings

 Disassembly
▪ Text representation of binary machine code

▪ Generated by program that reads the machine code

 Example Fragment

 Deciphering Numbers
▪ Value: 0x12ab

▪ Pad to 32 bits: 0x000012ab

▪ Split into bytes: 00 00 12 ab

▪ Reverse: ab 12 00 00
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Summary

 Representing information as bits

 Bit-level manipulations

 Integers
▪ Representation: unsigned and signed

▪ Conversion, casting

▪ Expanding, truncating

▪ Addition, negation, multiplication, shifting

 Representations in memory, pointers, strings

 Summary


