
18-613 Future of Computing

Milijana Surbatovich, Kiwan Maeng, Harsh Desai

1

Outline

2

• Basics of intermittent computing

• PL for intermittent computing

• Systems for intermittent computing

• Architectures for intermittent computing

Batteryless Energy-harvesting Devices (EHDs)
enable computing in inaccessible environments

Maintenance expensive
or impossible

x

x := in()

y := x

z := y +5

Batteryless EHDs

x

x := in()

y := x

z := y +5

3

Intermittent execution in energy harvesting devices

Energy Buffer

Harvester

4

Powers on as

energy is available

Hardware platform

Intermittent execution in energy harvesting devices

Energy Buffer

Harvester

5

Hardware platform

Volatile state clears,

persistent state remains

Powers off at arbitrary

program locations

Mixed-volatility Memory

• Volatile Memory loses state when the power turns off
• Register file, DRAM (traditional)

• Non-volatile Memory keeps state when the power turns off
• Disk(traditional), Flash, STT-MRAM

6

Volatile Non-volatile

Code

Program data

Registers

Peripherals

(Maybe) Stack

Programs checkpoint to make progress

Power fail

7

Save state at

checkpoints

Restore from save

at reboots

If registers are cleared, program will restart from the beginning

T
im

e

x := input()

i := i + 1

Power fail

…

x := input()

i := i + 1

data[i] := x

x := input()

i := i + 1

Power fail

x := input()

i := i + 1

i := i + 1

data[i] := x

Checkpointing Methods

Just-in-time (JIT) checkpointing

Hardware to monitor voltage

Checkpoint on low power

Generally no re-execution

8

In-code checkpoints

Programmer or compiler adds

Re-execute from last checkpoint

x := input()

i := i + 1

data[i] := x

Low voltage!

x := input()

i := i + 1

data[i] := x

(More on this in next section)(Focus of this section)

Outline

9

• Basics of intermittent computing

• PL for intermittent computing
• Memory bugs caused by intermittence

• Formally Defining Correctness

• Correct checkpoint set

• Systems for intermittent computing

• Architecture for intermittent computing

x := input()

i := i + 1

Systems must re-execute regions correctly

Must save starting value of i

Write-After-Read (WAR)

10

Incorrect dataflow

i := i + 1

data[i] := x

i

0

data

51 0 0

x

05

0 52 0 0 06

0 53 0 6 06

Skipped slot!

x := input()

i := i + 1

Correct Execution

i := i + 1

data[i] := x

i

0

data

51 0 0

x

05

0 52 0 0 06

0 51 0 0 06

0 52 6 0 06

State-of-the-art is to add WAR
variables to the checkpoint set

K. Maeng, A. Colin, B. Lucia. Alpaca: Intermittent
Execution without Checkpoints. OOPSLA ‘17

x := input()

Else z := 1

Input re-executions are not handled correctly

11

x := input()

If x > 5:

Incorrect

behaviour!

y := 1

Else z := 1

Different on

re-execution

Repeated-Input-Operation (RIO)

M. Surbatovich, L. Jia, B. Lucia. I/O Dependent
Idempotence Bugs in Intermittent Systems. OOPSLA ‘19

x := input()

If x > 5:

y := 1

x

0

y

00

z

00

x

0

y

16

z

00

x

0

y

13

z

01

The need to formalize intermittent execution

12

No formal spec in existing works → systems subtly incorrect

Our correctness condition addresses both WAR and RIO problems, which
no existing work has done

Outline

13

• Basics of intermittent computing

• PL for intermittent computing
• Memory bugs caused by intermittence

• Formally Defining Correctness

• Correct checkpoint set

• Systems for intermittent computing

• Architecture for intermittent computing

What does it mean to be correct?

Continuous execution specifies correct program behaviour

- If intermittent execution is equivalent to a continuous
execution, then it is correct

≈

14

B

A

B

A

B

Intermittent

Execution

Continuous

Execution

Equivalence must hold for ALL intermittent
executions of a program

15

≈

≈

≈

≈

≈

If equivalence only holds for some executions, then a program is

only sometimes correct, which is no good

16

Equivalence: memory reads and memory state at checkpoints

B

A

B

Reboots don’t restore to

the exact same state

B

A

Inputs cause different

paths to be taken

BB’

What makes equivalence difficult?

≈B

A

B

A

B

Intermittent

Execution

Continuous

Execution

Many dimensions (time, energy…); this project looks at memory

Defining acceptable differences

Locations that don’t fit these conditions must be checkpointed!

B

A

B

Reboots don’t restore to

the exact same state

B

A

Inputs cause different

paths to be taken

BB’..so differing locations

should be written on re-execution

(before being read) ..so differing locations should be written

on all paths dependent on inputs

Many systems don’t satisfy this constraint

Exclusive May-Write (EMW) set: may-writes minus must-writes

Must be

Checkpointed

WAR

Conditionally

written due to

inputsx EMW Y, Z

18

x := input()

If x > 5:

y := 1

Else z := 1

Meets

Conditions

Correctness Theorem

If all unsafe WAR and EMW variables are in the checkpointed set,

then an intermittent program will execute correctly

Checkpoint Set

≈B

A

B

A

B

Intermittent

Execution

Continuous

Execution

Read

Only
Meets

Cond.

WAR

EMW

Safe

19

How to reason precisely about intermittent
execution?

20

Define a model language and system state (simple, but should
include key features)

Define how executing commands changes the state

Show that no matter what command executes, the state

of the intermittent execution is related to a continuous execution

Define a model language and system state

21

• Programs are made of:
• Commands c ::= 𝜄 𝜄; 𝑐 if e then c1 else c2

• Instructions ι ::= … | x := e | checkpoint(𝝎) | reboot

• Expressions e ::= x |v (e.g., int, bool) | 𝑒1 ⊕ 𝑒2

Particular to

intermittence

Intermittent execution state: (𝜅, 𝑁, 𝑉, 𝑐)

• 𝜅 is a record of the last checkpoint

• N is non-volatile memory, a map of variables to values (x → 3)

• V is volatile memory

• C is the command to execute

Define how commands change state

22

𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡
𝜅, 𝑁, 𝑉, 𝒄𝒉𝒆𝒄𝒌𝒑𝒐𝒊𝒏𝒕(𝝎); 𝑐 ⇒ (𝑁|𝜔, 𝑉, 𝑐 , 𝑁, 𝑉, 𝑐)

𝑅𝑒𝑏𝑜𝑜𝑡
𝜅 = 𝑁′ , 𝑉, 𝑐

𝜅, 𝑁, ∅, 𝑟𝑒𝑏𝑜𝑜𝑡 ⇒ (𝜅, 𝑁 ⊲ 𝑁′, 𝑉, 𝑐)

B

A

B

𝑃𝑜𝑤𝑒𝑟𝑓𝑎𝑖𝑙
𝜅, 𝑁 , 𝑉, 𝑐 ⇒ (𝜅, 𝑁, ∅, 𝑟𝑒𝑏𝑜𝑜𝑡)

Executing a command transitions a system from one state to another

Defines what happens at

a checkpoint

List of locations to save Copy only locations in the list

… do this for all commands.

Prove the theorem

• An intermittent execution is a sequence of state transitions

• Show that after any transition, all memory locations either
match the memory of the continuous execution or meet the
conditions

23

Take-aways

- To build interesting applications, intermittent systems need to
be robust to power failures of arbitrary position and duration

- One challenge is that inputs cause bugs generally not handled
by existing systems

- Formalizing system behaviour and correctness definitions allow
us to prove if a system is correct or not

24

