
15213 - Recitation 2 -BombLab

September 21st, 2020

Introduction ​In this activity you will review the material on assembly instructions and using gdb to
debug and interpret programs. This serves as practice for bomblab. The same information is provided
on the slides and but have been provided as a handout in order to help people along with the process.
In order to get started Login to a shark machine and type these commands:

$ wget http://www.cs.cmu.edu/~213/activities/rec2.tar
$ tar xvpf rec2.tar $ cd rec2 $ make $ gdb act1

GDB Cheat Sheet:
● ​quit ​(q)

○ Exit gdb

● ​disassemble ​[any function name within the executable] ​(disas)

○ Show the assembly code for that function

● set disassemble-next-line on set disassemble-next-line off show disassemble-next-line
○ Shows the next assembly instruction after each step

● ​stepi
○ Step through 1 assembly instruction. Will follow function calls into other functions

● nexti
○ Same as stepi but will NOT follow function calls into other functions

● ​breakpoint ​[location] ​(b)

○ Set a breakpoint at location. Execution will stop before executing the line where the breakpoint is located

 at. The most common are [function], [*memory address], and [line number], but can be a number of

 things

● ​info breakpoints ​(i b)

○ List all breakpoints, along with whether or not they are enabled

● ​delete ​[breakpoint] ​(d)

○ Delete a breakpoint
● ​enable ​[breakpoint] ​(en)

○ Enable a breakpoint, If none specified, enables all breakpoints

● ​disable ​[breakpoint] ​(dis)

○ Disable a breakpoint. If none specified, disables all breakpoints

● ​info registers ​(i reg)

○ Print all the registers, along with their contents

● ​print ​[any valid C expression] ​(p)

○ Can be used to study any kind of local variable or memory location
○ Use casting to get the right type (e.g. print *(long *) pointer or print (char*) pointer)

○ Can format with things like /x (for hex), /d (for int), /s (for string) etc.

● ​x ​[some format specifier] [some memory address]

○ Examines memory. “x ptr” is the same as “p
*ptr”
○ Can format with things like /x (hex), /d (int), /s (string) etc.

● ​backtrace ​[some format specifier] [some memory address]

○ Print the current address and stack backtrace

Activity 1: ​In this activity you will get familiar with using gdb to interpret program behavior.

• ​(gdb) break main // tells GDB to pause right before entering main

• ​(gdb) run 15213 // starts execution with the argument “15213”

• ​You should see GDB print out:
• ​Breakpoint 1, main (argc=1, ​2, ​argv=[. . .]) at act1.c:5

• ​(gdb) continue // this continues execution until another break point
• ​(gdb) clear main // remove the breakpoint at function main

• ​(gdb) run 15213 // Q: What happens now?

• ​(gdb) disassemble main // show the assembly instructions in main

• ​(gdb) print (char*) [0x. . .] // prints a string
• ​Q: Does the printed value correspond to anything in the C code?

• ​(gdb) break main

• ​(gdb) run (with some argument)

• ​(gdb) print argv[1] // Q: What does this print out?
• ​(gdb) continue

• ​Q: Now what does this print out?

• ​(gdb) quit // exit GDB; agree to kill the running process

Activity 3:

Activity 3 has a Bomb Lab feel to it. It will print out “good args!” if you type in the right numbers
into the command line. Use GDB to find what numbers to use.

• ​$ cat act3.c // display the source code of act3

• ​$ gdb act3

• ​Q. Which register holds the return value from a function? (Hint: Use disassemble in main and look at
what register is used right after the function call to compare)

• ​(gdb) disassemble compare

• ​Q. Where is the return value set in compare?

• ​(gdb) break compare

• ​Now run act3 with two numbers

• ​Q. Using nexti or stepi, how does the value in register %rbx change in the compare function, leading
to the cmp instruction?

