
Program Translation and Execution II:
Processes
Oct 1, 1998

Topics
• User-level view of processes
• Implementation of processes
• setjmp/longjmp

class12.ppt

15-213
Introduction to Computer Systems

CS 213 F’98– 2 –class12.ppt

Processes
A process is an instance of a running program

• runs concurrently with other processes (multitasking)
• managed by a shared piece of OS code called the kernel

– kernel is no t a separate pro cess, but rath er runs as part o f some user
process

• each process has its own data space and process id (pid)
• data for each protected protected from other processes

Process A Process B

user code

kernel code

user code

kernel code

user code

Time Just a stream
of instructions!

CS 213 F’98– 3 –class12.ppt

Fork
int fork(void)

• creates a new process (child process) that is identical to the calling
process (parent process)

• returns 0 to the child process
• returns child’s pid to the parent process

if (fork() == 0) {
 printf(Òhello from child\nÓ);
}
else {
 printf(Òhello from parent\nÓ);
}

CS 213 F’98– 4 –class12.ppt

Exit
void exit(int status)

• exits a process
• atexit() function registers functions to be executed on exit

void cleanup(void) {
 printf(Òcleaning up\nÓ);
}

main() {
 atexit(cleanup);
 if (fork() == 0) {
 printf(Òhello from child\nÓ);
 }
 else {
 printf(Òhello from parent\nÓ);
 }
 exit();
}

CS 213 F’98– 5 –class12.ppt

Wait
int wait(int child_status)

• waits for a child to terminate and returns status and pid

main() {
 int child_status;

 if (fork() == 0) {
 printf(Òhello from child\nÓ);
 }
 else {
 printf(Òhello from parent\nÓ);
 wait(&child_status);
 printf(Òchild has terminated\nÓ);
 }
 exit();
}

CS 213 F’98– 6 –class12.ppt

Exec
int execl(char *path, char *arg0, char *arg1, ...)

• loads and runs executable at path with args arg0, arg1, ...
• returns -1 if error, otherwise doesn’t return!

main() {

 if (fork() == 0) {
 execl(Ò/usr/bin/cpÓ, ÒcpÓ,
 ÒfooÓ, ÒbarÓ,0);
 }
 wait(NULL);
 printf(Òcopy completed\nÓ);
 exit();
}

CS 213 F’98– 7 –class12.ppt

Example: Concurrent network server

void main() {
 master_sockfd = sl_passivesock(port); /* create master socket */
 while (1) {
 slave_sockfd = sl_acceptsock(master_sockfd); /* await request */
 switch (fork()) {

 case 0: /* child closes its master and manipulates slave */
 close(master_sockfd);
 /* code to read and write to/from slave socket goes here */
 exit(0);

 default: /* parent closes its copy of slave and repeats */
 close(slave_sockfd);

 case -1: /* error */
 fprintf("fork error\n");
 exit(0);
 }
 }
}

CS 213 F’98– 8 –class12.ppt

Process hierarchy

shell

childchildchild

grandchildgrandchild

init (1)

(0)

Daemon
e.g. snmp

CS 213 F’98– 9 –class12.ppt

Unix startup (1)

init (1)

(0) process 0: handcrafted kernel process

process 1: user mode process
fork() and exec(/sbin/init)

1. Pushing reset button loads the pc with the address of a small
 bootstrap program.
2. Bootstrap program loads the boot block (disk block 0).
3. Boot block program loads kernel (e.g., /vmunix)
4. Boot block program passes control to kernel.
5. Kernel handcrafts the data structures for process 0.

CS 213 F’98– 10 –class12.ppt

Unix startup (2)

init [1]

[0]

forks a getty (get tty or get terminal)
for the console

gettyDaemons
e.g. snmp

/etc/inittab init forks new processes as per
the /etc/inittab file

CS 213 F’98– 11 –class12.ppt

Unix startup (3)

init [1]

[0]

getty execs a login programlogin

CS 213 F’98– 12 –class12.ppt

Unix startup (4)

init [1]

[0]

login gets user’s login and passw
if OK, it execs a shell
if not OK, it execs another getty

tcsh

CS 213 F’98– 13 –class12.ppt

Loading and running programs
from a shell

/* read command line until EOF */
while (read(stdin, buffer, numchars)) {
 <parse command line>
 if (<command line contains Ô&Õ >)
 amper = 1;
 else
 amper = 0;
 }

 /* for commands not in the shell command language */
 if (fork() == 0) {
 execl(cmd, cmd, 0)
 }
 if (amper == 0)
 retpid = wait(&status);
}

CS 213 F’98– 14 –class12.ppt

Process memory image (Alpha)
Reserved for kernel

Reserved for shared libraries
and dynamic loader

Available for heap

Heap (via malloc() or sbrk() Grows up

Bss segment

Data segment

Text segment

Stack

Not accessible

Available for stack

Grows down to zero

Not accessible by convention
(64KB)

$gp

$sp

0x0000 0000 0000 0000

0x0000 0000 0000 ffff
0x0000 0000 0001 0000

0x0000 0000 1fff ffff
0x0000 0001 2000 0000

0x0000 03ff 7fff ffff
0x0000 03ff 8000 0000

0x0000 03ff ffff ffff
0x0000 0400 0000 0000

0xffff fbff ffff ffff
0xffff fc00 0000 0000

0xffff ffff ffff ffff

CS 213 F’98– 15 –class12.ppt

Kernel block diagram

hardware (processor and devices)

hardware control (interrupt and exception handlers)

device drivers

buffer cache

char block

file system process control

system call interface

libraries

User programs

User-level

Kernel level

Kernel level

Hw level

CS 213 F’98– 16 –class12.ppt

User and kernel modes
User mode

• Process can
– execute its own instructions and access its own data.

• Process cannot
– execute kernel instructions or privileged instructions (e.g. halt)
– access kernel data or data from other processes.

Kernel mode
• Process can

– execute kernel instructions and privileged instructions
– access kernel and user addresses

Processes transition from user to kernel mode via
• interrupts and exceptions
• system calls (traps)

CS 213 F’98– 17 –class12.ppt

System call interface
System calls (traps) are expected program events

• e.g., fork(), exec(), wait(), getpid()

User code
• call user-level library function,
• executes special syscall instruction

– e.g. syscall(id)
• switch from user mode to kernel mode
• transfer control to kernel system call interface

System call interface
• find entry in syscall table corresponding to id
• determine number of parameters
• copy parameters from user member to kernel memory
• save current process context (in case of abortive return)
• invoke appropriate function in kernel

CS 213 F’98– 18 –class12.ppt

Hardware control
Interrupts and exceptions are unexpected hardware

events
Interrupts

• events external to the processor
– I/O device asking for attention
– timer interrupt

• typically indicated by setting an external pin

Exceptions
• events internal to processor (as a result of executing an instruction)

– divide by zero

Same mechanism handles both
• Interrupt or exception triggers transfer of control from user code to

interrupt handlers in the hardware control part of the kernel
• kernel services interrupt or exception
• If a timer interrupt, kernel might decide to give control to a new

process (context switch)

CS 213 F’98– 19 –class12.ppt

Process control: Context of a process
The context of a process is the state that is necessary

to restart the process if its interrupted. Union of ...
• user-level context
• register context
• system-level context.

User-level context
• text, data, and bss segments, and user stack

Register context
• PC, general purpose integer and floating point regs, IEEE rounding

mode, kernel stack pointer, process table address, ...

System-level context
• various OS tables process and memory tables, kernel stack, ...

CS 213 F’98– 20 –class12.ppt

Process control: Context switch
The kernel can decide to pass control to another

process if:
• the current process puts itself to sleep
• the current process exits
• when the current process returns from a system call
• when the current process returns after being interrupted

Control passed to new process via context switch:
• save current process context.
• select new process (scheduling)
• restore (previously save) context of new process
• pass control to new process

CS 213 F’98– 21 –class12.ppt

Process control: Process states
1. User Running: Process is executing in user mode.
2. Kernel Running: Process is executing in kernel mode.
3. Ready to Run: Process is not executing, but is ready to as soon as the

kernel schedules it.
4. Asleep: Process is sleeping.
5. Preempted: Process is returning from kernel mode to user mode, but

the kernel preempts it and does a context switch to schedule another
process.

6. Created: Process is newly created, but it is not yet ready to run, nor is
it sleeping (This is the start state for all process created with fork).

7. Zombie: The process executed the exit system call and is in the zombie
state (until wait’ed for by its parent)

CS 213 F’98– 22 –class12.ppt

Process states and state transitions

1

User Running

2
Kernel Running

5

Preempted

7

Zombie

3

Ready to Run

4

6

Created

Asleep

preempt

interrupt,
interrupt return

exit

return

syscall ,
interrupt,
exception

return to user

reschedule process

enough mem

awake

sleep

fork

CS 213 F’98– 23 –class12.ppt

Setjmp/Longjmp
Powerful (and dangerous) user-level mechanism for

transferring control to an arbitrary location.

int setjmp(jmp_buf j)
• must be called before longjmp
• meaning:

– remember where you are by storing the current register context and
PC value in jmp_buf

– return 0

void longjmp(jmp_buf j, int i)
• called after setjmp
• meaning:

– return from the setjmp remembered by jump buffer j with a value of i

– restores register context from jump buf j, sets register $ra to i, sets PC
to the PC stored in jump buf j.

CS 213 F’98– 24 –class12.ppt

Setjmp/Longjmp example
Useful for :

• error recovery
• implementing user-level threads packages

#include <setjmp.h>
jmp_buf buf;

main() {
 if (setjmp(buf)) {
 printf(Òback in main\nÓ);
 else
 printf(Òfirst time through\nÓ);
 p1(); /* p1->p2->p3 */
}
...
p3() {
 <error checking code>
 if (error)
 longjmp(buf, 1)
}

