
Memory Management I:
Dynamic Storage Allocation

Oct 8, 1998

Topics
• User-level view
• Policies
• Mechanisms

class14.ppt

15-213
Introduction to Computer Systems

CS 213 F’98– 2 –class14.ppt

Harsh Reality #3
Memory Matters

Memory is not unbounded
• It must be allocated and managed
• Many applications are memory dominated

– Especially those based on complex, graph algorithms

Memory referencing bugs especially pernicious
• Effects are distant in both time and space

Memory performance is not uniform
• Cache and virtual memory effects can greatly affect program

performance
• Adapting program to characteristics of memory system can lead to

major speed improvements

CS 213 F’98– 3 –class14.ppt

Dynamic Storage Allocation

Application
• Requests and frees contiguous blocks of memory

Allocator (e.g., Unix malloc package)
• Provides an abstraction of memory as a set of blocks
• Doles out free memory blocks to application
• Keeps track of free and allocated blocks

Heap memory
• region starting after bss segment

Application

Dynamic Storage Allocator

Heap Memory

CS 213 F’98– 4 –class14.ppt

Process memory image (Alpha)
Reserved for kernel

Reserved for shared libraries
and dynamic loader

Available for heap

Heap (via malloc()) Grows up

Bss segment

Data segment

Text segment

Stack

Not accessible

Available for stack

Grows down to zero

Not accessible by convention
(64KB)

$gp

$sp

0x0000 0000 0000 0000

0x0000 0000 0000 ffff
0x0000 0000 0001 0000

0x0000 0000 1fff ffff
0x0000 0001 2000 0000

0x0000 03ff 7fff ffff
0x0000 03ff 8000 0000

0x0000 03ff ffff ffff
0x0000 0400 0000 0000

0xffff fbff ffff ffff
0xffff fc00 0000 0000

0xffff ffff ffff ffff

CS 213 F’98– 5 –class14.ppt

Malloc package
void *malloc(int size)

• if successful:
– returns 8-byte aligned pointer to memory block of at least size bytes

– is size=0, returns NULL
• if unsuccessful:

– returns NULL

void free(void *p)
• returns block pointed at by p to pool of available memory
• p must come from a previous call to malloc().

CS 213 F’98– 6 –class14.ppt

Definitions and assumptions

Allocated block
(4 words)

Free block
(3 words)

Relative
Address

(word address)
0 4 8 12

Heap Memory (fixed size)

...

Program Primitives:
• Allocation request: Ai(n)

– Allocate n words and call it block i

– Example: A7(128)
• Free request: Fj

– Free block j

– Example: F7

CS 213 F’98– 7 –class14.ppt

Allocation example

A1(4)

A2(5)

A3(6)

F2

A4(2)

CS 213 F’98– 8 –class14.ppt

Constraints
Applications:

• Can issue arbitrary sequence of allocation and free requests
• Free requests must correspond to an allocated block

Allocators
• Can’t control number or size of allocated blocks
• Must respond immediately to all allocation requests

– i.e., can’t reorder or buffer requests
• Must allocate blocks from free memory

– i.e., can only place allocated blocks in free memory
• Must align blocks so they satisfy all alignment requirements

– usually 8 byte alignment

• Can only manipulate and modify free memory
• Can’t move the allocated blocks once they are allocated

– i.e., compaction is not allowed

CS 213 F’98– 9 –class14.ppt

Fragmentation

A1(4)

A2(5)

A3(6)

F2

A4(6)
oops!

CS 213 F’98– 10 –class14.ppt

Fragmentation (cont)
Def: (external) fragmentation is the inability to reuse free

memory.
• possible because applications can free blocks in any order, potentially

creating holes.

Minimizing fragmentation is the fundamental problem of
dynamic resource allocation...

Unfortunately, there is no good operational definition.

Function of
• Number and sizes of holes,

– Placement of allocated blocks,
– Past program behavior (pattern of allocates and frees)

• Future program behavior.

CS 213 F’98– 11 –class14.ppt

Fragmentation (cont)

Which heaps have a fragmentation problem?
It depends...

• Qualitatively, C has fewer and bigger holes.
• But fragmentation occurs only if program needs a large block.
• Still, C is probably less likely to encounter problems.

Definitive answer requires a model of program
execution.

C

A

B

CS 213 F’98– 12 –class14.ppt

Fragmentation (cont)

The policy for placing allocated blocks has a big impact on fragmentation

A1(1)

“First Fit”

A2(2)

A3(4)

Oops!

CS 213 F’98– 13 –class14.ppt

Fragmentation (cont)

A1(1)

“Best Fit”

A2(2)

A3(4)

But “best fit” doesn’t always work best either

CS 213 F’98– 14 –class14.ppt

Fragmentation (cont)

A1(1)

“Best Fit”

A2(2)

A3(2)

A4(2)

oops!

CS 213 F’98– 15 –class14.ppt

Fragmentation (cont)

A1(1)

“First Fit”

A2(2)

A3(2)

A4(2)

CS 213 F’98– 16 –class14.ppt

Splitting

A1(1)

(1) Find a free block that is big enough

(2) Split the block into two free blocks

(3) Allocate the first block

CS 213 F’98– 17 –class14.ppt

Coalescing

2

F2
(1) free the block

(2) merge any adjacent free blocks into a single free block

Crucial operation for any dynamic storage allocator
Can be:

• immediate (performed at every free request)
• deferred (performed every k free requests or when necessary)

CS 213 F’98– 18 –class14.ppt

Organizing the set of free blocks
Some data structure needed to organize the search of

the free blocks.
Efficient implementations use the free blocks

themselves to hold the necessary link fields.
• disadvantage: every allocated block must be large enough to hold

the link fields (since the block could later be freed)
• imposes a minimum block size
• could result in wasted space (internal fragmentation)

Common approach: list of free blocks embedded in an
array of allocated blocks.

CS 213 F’98– 19 –class14.ppt

Organizing the set of free blocks
address ordering

– no memory overhead

doubly linked list of free blocks
– simple, popular, reasonable memory overhead
– might not scale to large sets of free blocks

tree structures
– more scalable

– less memory efficient than lists

segregated free lists
– different free lists for different size classes of free blocks.
– internal fragmentation

CS 213 F’98– 20 –class14.ppt

Placement policies
When a block is allocated, we must search the free list

for a free block that is large enough to satisfy the
request (feasible free block).

Placement policy determines which feasible free block
to choose.

A1(1)

Each of these free blocks is feasible.
Where do we place the allocated block?

CS 213 F’98– 21 –class14.ppt

Placement policies (cont)
first fit

– search list from beginning, choose first free block that fits.
– simple and popular

– can increase search time, because “splinters” can accumulate near the
front of the list.

– simplicity lends itself to tight inner loop

– might not scale well for large free lists.

A1(1)

First fit chooses this block

Search starts here

CS 213 F’98– 22 –class14.ppt

Placement policies (cont)
best fit

– choose free block that fits the best
– motivation is to try to keep fragments (what’s left over after splitting) as

small as possible
– can backfire if blocks almost fit, but not quite.

A1(1)

Best fit chooses this block

Search starts here

CS 213 F’98– 23 –class14.ppt

Placement policies (cont)
next fit [Knuth]

– like first fit, but instead of starting each search at the beginning...
– use a roving pointer to remember where last search was satisfied.

– begin next search at this point.
– motivation is to decrease average search time.
– potential disadvantage: can scatter blocks from one program

throughout memory, adversely affecting locality.

A1(1)

Roving pointer

Next fit chooses this free block

CS 213 F’98– 24 –class14.ppt

Implementation Issues

a

1 word

size
Format of
allocated and
free blocks

data

a = 1: allocated block
a = 0: free block

size: block size

data: application data
(allocated blocks only)

The simplest allocator
• allocate time: linear in total number of blocks
• free time: linear in total number of blocks
• min block size: two words

CS 213 F’98– 25 –class14.ppt

Implementation issues
A simple space optimization:

• exploit unused lower order size bits
• block size always a multiple of the wordsize
• reduces minimum block size from 2 words to 1 word

size

1 word

Format of
allocated and
free blocks

data

a = 1: allocated block
a = 0: free block

size: block size

data: application data
(allocated blocks only)

a

CS 213 F’98– 26 –class14.ppt

Implementation issues
Boundary tags [Knuth73]

• replicate size/allocated word at bottom of free blocks
• allocate time: linear in total number of blocks
• free time: constant time
• minimum block size: 2 words

size

1 word

Format of
allocated and
free blocks

data

a = 1: allocated block
a = 0: free block

size: block size

data: application data
(allocated blocks only)

a

size aboundary tag

CS 213 F’98– 27 –class14.ppt

Constant time coalescing

allocated

allocated

allocated

free

free

allocated

free

free

block being
freed

Case 1 Case 2 Case 3 Case 4

CS 213 F’98– 28 –class14.ppt

Food for thought
How can we use a list of free block to reduce the

search time to linear in the number of free blocks?

Can we avoid having two conditionals in the inner loop
of the free block list traversal
• one to check size
• one to check that entire list has been searched

Can we implement a free list algorithm with constant
time coalescing and a minimum block size of three
words instead of four words?

CS 213 F’98– 29 –class14.ppt

Internal fragmentation
Internal fragmentation is wasted space inside allocated

blocks:
• minimum block size larger than requested amount

– e.g., due to minimum free block size, free list overhead
• policy decision not to split blocks

– e.g., allocating from segregated free lists (see [Wilson85])

Much easier to define and measure than external
fragmentation.

Source of interesting computer science forensic
techniques in the context of disk blocks
• contents of “slack” at the end of the last sector of a file contain

directory entries.
• provide a snapshop of the system that copied the file.

CS 213 F’98– 30 –class14.ppt

For more information

D. Knuth, “The Art of Computer Programming, Second
Edition”, Addison Wesley, 1973
• the classic reference on dynamic storage allocation

Wilson et al, “Dynamic Storage Allocation: A Survey
and Critical Review”, Proc. 1995 Int’l Workshop on
Memory Management, Kinross, Scotland, Sept, 1995.
• comprehensive survey
• /afs/cs/academic/class/15-213/doc/dsa.ps

