
Performance Evaluation I

November 5, 1998

Topics
• Performance measures (metrics)
• Timing
• Profiling

15-213

class22.ppt

CS 213 F’98– 2 –class22.ppt

Performance expressed as a time
Absolute time measures (metrics)

• difference between start and finish of an operation
• synonyms: running time, elapsed time, response time, latency,

completion time, execution time
• most straightforward performance measure

Relative (normalized) time measures
• running time normalized to some reference time
• (e.g. time/reference time)

Guiding principle: Choose performance measures that
track running time.

CS 213 F’98– 3 –class22.ppt

Performance expressed as a rate
Rates are performance measures expressed in units of

work per unit time.

Examples:
• millions of instructions / sec (MIPS)
• millions of fp instructions / sec (Mflops/sec) Mflop = 10^6 flops
• millions of bytes / sec (MBytes/sec) MByte = 2^20 bytes
• millions of bits / sec (Mbits/sec) Mbit = 10^6 bits
• images / sec
• samples / sec
• transactions / sec (TPS)

CS 213 F’98– 4 –class22.ppt

Performance expressed as a rate(cont)

Key idea: Report rates that track execution time.

Example: Suppose we are measuring a program that
convolves a stream of images from a video camera.

Bad performance measure: MFLOPS
• number of floating point operations depends on the particular

convolution algorithm: n^2 matix-vector product vs nlogn fast
Fourier transform. An FFT with a bad MFLOPS rate may run faster
than a matrix-vector product with a good MFLOPS rate.

Good performance measure: images/sec
• a program that runs faster will convolve more images per second.

CS 213 F’98– 5 –class22.ppt

Timing mechanisms
Clocks

• returns elapsed time since epoch (e.g., Jan 1, 1970)
• Unix getclock() command
• coarse grained (e.g., us resolution on Alpha)

long int secs, ns;
struct timespec *start, *stop;

getclock(TIMEOFDAY, start);
P();
getclock(TIMEOFDAY, stop);
secs = (stop->tv_sec - start->tv_sec);
ns = (stop->tv_nsec - start->tv_nsec);
printf(“%ld ns\n”, secs*1e9 + ns);

CS 213 F’98– 6 –class22.ppt

Timing mechanisms (cont)
Interval (count-down) timers

• set timer to some initial value
• timer counts down to zero, then sends Unix signal
• course grained (e.g., us resolution on Alphas)

void init_etime() {
 first.it_value.tv_sec
 = 86400;
 setitimer(ITIMER_VIRTUAL,
 &first, NULL);
}

init_etime();
secs = get_etime();
P();
secs = get_etime() - secs;
printf(“%lf secs\n”, secs);

double get_etime() {
 struct itimerval curr;
 getitimer(ITIMER_VIRTUAL,&curr);
 return(double)(
 (first.it_value.tv_sec -
 curr.it_value.tv_sec) +
 (first.it_value.tv_usec -
 curr.it_value.tv_usec)*1e-6);

Using the
interval timer

CS 213 F’98– 7 –class22.ppt

Timing mechanisms (cont)
Performance counters

• counts system events (CYCLES, IMISS, DMISS, BRANCHMP)
• very fine grained
• short time span (e.g., 9 seconds on 450 MHz Alpha)

unsigned int counterRoutine[] = { /* Alpha cycle counter */
 0x601fc000u,
 0x401f0000u,
 0x6bfa8001u
};
unsigned int (*counter)(void) = (void *)counterRoutine;

cycles = counter();
P();
cycles = counter() - cycles;
printf(“%d cycles\n”, cycles);

Using the Alpha
cycle counter

CS 213 F’98– 8 –class22.ppt

Measurement pitfalls
Discretization errors

• need to measure large enough chunks of work
• but how large is large enough?

Unexpected cache effects
• artificial hits or misses
• cold start misses due to context swapping

CS 213 F’98– 9 –class22.ppt

The nature of time

real (wall clock) time

= user time (time executing instructing
 instructions in the user process)

+ = real (wall clock) time

We will use the word “time” to refer to user time .

= system time (time executing instructing
 instructions in kernel on behalf of user process

+

CS 213 F’98– 10 –class22.ppt

Anatomy of a timer

timer period: dt secs/tick

timer resolution: 1/dt ticks/sec

time dt

clock interrupt (tick)

T1 T2 Tn

Tstart Tfinish
program execution time

interval 2

Assume here that Tk = Tk-1 + dt

Tk

CS 213 F’98– 11 –class22.ppt

Measurement pitfall #1:
Discretization error

time dt
T1 T2 Tn

Tstart Tfinish
actual program execution time

measured time: (Tn - T1)
actual time: (Tn - T1) + (Tfinish - Tn) - (Tstart - T1)
absolute error = measured time - actual time

fstart = (Tstart - T1)/dt fraction of interval overreported

ffinish = (Tfinish - Tn)/dt fraction of interval underreported

absolute error = dt f start - dt f finish = dt (f start - ffinish)
max absolute error = +/- dt

CS 213 F’98– 12 –class22.ppt

Examples of discretization error

time

actual running time

Actual time = near zero
measured time = dt

Absolute measurement error = +dt

CS 213 F’98– 13 –class22.ppt

Examples of discretization error (cont)

time

actual running time

Actual time = near 2dt
measured time = dt

Absolute measurement error = -dt

CS 213 F’98– 14 –class22.ppt

Estimating the timer period dt

start = 0;
while (start == (end = get_etime())))
 ;
dt = end - start;
printf(“dt = %lf\n”, dt);

Digital Unix Alpha systems: dt = 1ms

CS 213 F’98– 15 –class22.ppt

Modeling discretization error
Key idea: need to measure long enough to hide the

discretization error.

Example:

start = get_etime();
for (i=0; i<n; i++) {
 P();
}
tprime = get_etime() - start;

Question: how big must tprime be in order to get a “good”
estimate of the running time of the loop?

CS 213 F’98– 16 –class22.ppt

Relative error analysis

Let t and t’ be the actual and measured running times of the loop,
respectively, and let dt be the timer period.

Also, let t’-t be the absolute error and let |t’-t|/t be the relative error.

Problem: What value of t’ will result in a relative error less than
or equal to Emax?

Fact (1): |t’-t| <= dt
Fact (2): t’ - dt <= t

We want |t’-t|/t <= Emax

dt/t <= Emax (1)
dt/ Emax <= t (algebra)
dt/ Emax <= t’ - dt (2)

dt/ Emax + dt <= t’

CS 213 F’98– 17 –class22.ppt

Relative error analysis

start = get_etime();
for (i=0; i<n; i++) {
 P();
}
tp = get_etime() - start; /* t’ */

Example: Let dt=1 ms and Emax = 0.05 (i.e., 5% relative error)

Then:

 dt/Emax + dt <= t’

 .001/.05 + .05 <= t’

 t’ >= 0.070 seconds (70 ms)

CS 213 F’98– 18 –class22.ppt

Measurement pitfall #2:
Unexpected cache effects

Call ordering can introduce unexpected cold start
misses (measured with Alpha cycle counter):
• ip(array1, array2, array3); /* 68,829 cycles */
• ipp(array1, array2, array3); /* 23,337 cycles */

• ipp(array1, array2, array3); /* 70,513 cycles */
• ip(array1, array2, array3); /* 23,203 cycles */

Context switches can alter cache miss rate
• 71,002 23,617 (ip/ipp cycles on unloaded timing server)
• 67,968 23,384
• 68,840 23,365
• 68,571 23,492
• 69,911 23,692

CS 213 F’98– 19 –class22.ppt

Measurement summary
It’s difficult to get accurate times

• discretization error
• but can’t always measure short procedures in loops

– global state
– mallocs
– changes cache behavior

It’s difficult to get repeatable times
• cache effects due to ordering and context switches

Moral of the story:
• Adopt a healthy skepticism about measurements!
• Always subject measurements to sanity checks.

CS 213 F’98– 20 –class22.ppt

Profiling
The goal of profiling is to account for the cycles used

by a program or system.
Basic techniques

• src translation
– gprof [Graham, 1982]

• binary translation
– Atom [DEC, 1993]
– pixie [MIPS, 1990]

• direct simulation
– SimOS [Rosenblum, 1995]

• statistical sampling
– prof (existing interrupt source)

– DCPI [Anderson, 1997] (performance counter interrupts)
– SpeedShop [Zhaga, 1996] (performance counter interrupts)

CS 213 F’98– 21 –class22.ppt

Profiling tools

Tool Overhead Scope Grain Stalls

gprof high app inst cnt none
pixie high app proc cnt none
SimOS high sys inst time accurate
prof low app inst time none
DCPI low sys inst time accurate
SpeedShop low sys inst time inacurate

Overhead: How much overhead (slowdown) does the tool introduce?
Scope: Can the tool be used to profile an entire system, or a single program?
Grain: What types of program units can the tool account for?
Stalls: Can the tool account for instruction stalls?

CS 213 F’98– 22 –class22.ppt

Case study: DEC Continuous
Profiling Infrastructure (DCPI)

Cutting edge profiling tool for Alpha 21164

cycles % procedure image

2064143 33.9 ffb8ZeroPolyArc /usr/shlib/X11/lib_dec_ffb_ev5.so
517464 8.5 ReadRequestFromClient /usr/shlip/X11/libos.so
305072 5.0 miCreateETandAET /usr/shlib/X11/libmi.so
245450 4.0 bcopy /vmunix
170723 2.8 in_checksum /vmunix

Coarse grained profiling:

CS 213 F’98– 23 –class22.ppt

DCPI case study

addr instruction
pD (p=branch mispredict)

 pD (D = data TLB miss)
009810 ldq t4,0(t1)
009814 addq t0,0x4,t0 (dual issue)
009818 ldq t5,8(t1)
00981c ldq t6,16(t1)
009820 ldq a0,24(t1)
009824 lda t1, 32(t1) (dual issue)

dwD (d=D-cache miss)
dwD ... 18
dwD (w=write buffer)

009828 stq t4,0(t2)
00982c cmpmult t0,v0,t4
009830 t5,8(t2)

s (s=slotting hazard)
dwD
dwD 114.5
dwD

009834 stq t6,16(t2)
...

Fine-grained profiling:

for (i=0; i<n; i++)
 c[i] = a[i];

CS 213 F’98– 24 –class22.ppt

DCPI architecture

16 bit cycle counter

triggers interrupt on overflow
(user-writeable, distributed uniformly
between 60K and 64 K for DCPI)

high priority
performance counter

interrupt handler

(PC,PID,event)

Sample histogram
user level

collection daemon

CS 213 F’98– 25 –class22.ppt

DCPI architecture

Data Collection
• A performance counter counts occurrences of a particular kind of

event (e.g., cycle counter counts the passage of instruction cycles)
• The performance counter triggers a high-priority hardware interrupt

after a user-defined number of events (5200 times a second).
• The interrupt handler records a (PC, PID, event type) tuple
• The interrupt handler counts samples with a hash table to reduce

data volume.
• When hash table is full, handler passes results to user-level analysis

daemon, which associates samples with load images.

Question:
• How to associate sample with load image?

– modified /usr/sbin/loader records all dynamically loaded binaries.
– modified exec call records all statically loaded binaries.
– at startup, daemon scans for active processes and their regions.

CS 213 F’98– 26 –class22.ppt

DCPI architecture

Data Analysis
• evaluates PC sample histogram offline
• assigns cycles to procedures and instructions.
• identifies stalls and possible sources (data cache miss, write buffer

overflow, TLB miss)

CS 213 F’98– 27 –class22.ppt

DCPI architecture
Interesting analysis problem:
If we see a large sample count for a particular

instruction, did it
– execute many times with no stalls?
– execute only a few times with large stalls?

• approach: use compiler to identify basic blocks [a block of
instructions with no jumps in (except possibly at the beginning) and
no jumps out (except possibly at the end)]

• compare execution frequency of loads/stores to non-blocking
instructions in the block.

For more info: Anderson, et al. “Continuous Profiling: Where Have
all the Cycles Gone?”, ACM TOCS, v15, n4, Nov. 1997, pp 357-390.

