Carnegie Mello

Course Overview

15-213/18-243: Introduction to Computer Systems
15t Lecture, 18 May 2011

Instructors:
Gregory Kesden

The course that gives CMU its “Zip”!

Carnegie Mello

Overview

m Course theme

m Five realities

m How the course fits into the CS/ECE curriculum
m Logistics

Course Theme:

Abstraction Is Good But Don’t Forget Reality

m Most CS and CE courses emphasize abstraction
= Abstract data types
= Asymptotic analysis

m These abstractions have limits

= Especially in the presence of bugs
= Need to understand details of underlying implementations

m Useful outcomes
"= Become more effective programmers
= Able to find and eliminate bugs efficiently
= Able to understand and tune for program performance
" Prepare for later “systems” classes in CS & ECE

= Compilers, Operating Systems, Networks, Computer Architecture,
Embedded Systems

Great Reality #1:
Ints are not Integers, Floats are not Reals

m Example 1: Is x2 > 0?

" Float’s: Yes!

" |nt’s:

Carnegie Mello

losr 2.

7o

-

o 306... 1,307...

e
/F‘—m
¥

... 32,767...-32,7%8...

275

=]

v =32,767... 32,765 ...

2w

=

= 40000 * 40000 - 1600000000
= 50000 * 50000 = ??

m Example 2:Is(x+y)+z = x+(y + 2)?
= Unsigned & Signed Int’s: Yes!

" Float’s:

= (1e20+-1e20)+3.14-->3.14
= 1e20 + (-1e20 + 3.14) --> ??

xkecd.com/571

Carnegie Mello

Code Security Example

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
[* Byte count len is minimum of buffer size and maxlen */
int len = KSIZE < maxlen ? KSIZE : maxlen;
memcpy(user_dest, kbuf, len);
return len;

m Similar to code found in FreeBSD’s implementation of
getpeername

m There are legions of smart people trying to find vulnerabilities
in programs

Carnegie Mello

Typical Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
[* Byte count len is minimum of buffer size and maxlen */
int len = KSIZE < maxlen ? KSIZE : maxlen;
memcpy(user_dest, kbuf, len);
return len;

#define MSIZE 528

void getstuff() {
char mybuf[MSIZE];
copy_from_kernel(mybuf, MSIZE);
printf(“%s\n”, mybuf);

}

Carnegie Mello

Malicious Usage

* Kernel memory region holding user-accessible data */
Hdefine KSIZE 1024

char kbuf[KSIZE];

* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {

[* Byte count len is minimum of buffer size and maxlen */
int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);
return len;

#define MSIZE 528

void getstuff() {
char mybuf[MSIZE];
copy_from_kernel(mybuf, -MSIZE);

}..

Carnegie Mello

Computer Arithmetic

m Does not generate random values
= Arithmetic operations have important mathematical properties

I a I”

m Cannot assume all “usual” mathematical properties
= Due to finiteness of representations
" Integer operations satisfy “ring” properties
= Commutativity, associativity, distributivity
" Floating point operations satisfy “ordering” properties
= Monotonicity, values of signs

m Observation

" Need to understand which abstractions apply in which contexts
" Important issues for compiler writers and serious application programmers

Great Reality #2:

You’'ve Got to Know Assembly

m Chances are, you’ll never write programs in assembly
= Compilers are much better & more patient than you are

m But: Understanding assembly is key to machine-level execution
model
= Behavior of programs in presence of bugs
= High-level language models break down
® Tuning program performance
= Understand optimizations done / not done by the compiler
= Understanding sources of program inefficiency
" Implementing system software
= Compiler has machine code as target
= Operating systems must manage process state

Creating / fighting malware
= x86 assembly is the language of choice!

Carnegie Mello

Assembly Code Example

m Time Stamp Counter

= Special 64-bit register in Intel-compatible machines
" Incremented every clock cycle
= Read with rdtsc instruction

m Application

= Measure time (in clock cycles) required by procedure

double t;

start_counter();

P();

t = get_counter();

printf("P required %f clock cycles\n", t);

Carnegie Mello

Code to Read Counter

m Write small amount of assembly code using GCC’s asm facility

m Inserts assembly code into machine code generated by
compiler

static unsigned cyc_hi = 0;
static unsigned cyc lo = 0;

[* Set *hi and *lo to the high and low order bits
of the cycle counter.

*/

void access_counter(unsigned *hi, unsigned *lo)

{

asm("rdtsc; movl %%edx,%0; movl %%eax,%1"
: "=rl| (*hl), "=rl| (*IO)

: "%edx", "%eax");

Great Reality #3: Memory Matters

Random Access Memory Is an Unphysical Abstraction

m Memory is not unbounded
® |t must be allocated and managed
" Many applications are memory dominated
m Memory referencing bugs especially pernicious

= Effects are distant in both time and space

m Memory performance is not uniform
= Cache and virtual memory effects can greatly affect program performance

= Adapting program to characteristics of memory system can lead to major
speed improvements

Carnegie Mello

Memory Referencing Bug Example

double fun(int i)
{
volatile double d[1] = {3.14};
volatile long int a[2];
ali] = 1073741824, /* Possibly out of bounds */
return d[0];

}

fun(0) = 3.14

fun(l) = 3.14

fun(2) = 3.1399998664856

fun(3) = 2.00000061035156

fun (4) - 3.14, then segmentation fault

mResult is architecture specific

= | execute up to fun(11) on my Core 2 Duo Mac

Carnegie Mello

Memory Referencing Bug Example

double fun(int i)
{
volatile double d[1] = {3.14};
volatile long int a[2];
ali] = 1073741824, /* Possibly out of bounds */
return d[0];

}
fun(0) = 3.14
fun(l) = 3.14
fun(2) = 3.1399998664856
fun(3) = 2.00000061035156
fun (4) - 3.14, then segmentation fault
Explanation: |Saved State 4
d7 ... d4 3
43 do 9 Locatlc?n accessed by
fun (1)
a[1] 1
a[0] 0 _

Carnegie Mello

Memory Referencing Errors

m C and C++ do not provide any memory protection
® Qut of bounds array references
" |nvalid pointer values
= Abuses of malloc/free

m Can lead to nasty bugs
= Whether or not bug has any effect depends on system and compiler
= Action at a distance
= Corrupted object logically unrelated to one being accessed
= Effect of bug may be first observed long after it is generated

m How can | deal with this?
" Program in Java, Ruby or ML
= Understand what possible interactions may occur
= Use or develop tools to detect referencing errors

Carnegie Mello

Memory System Performance Example

void copyij(int src[2048][2048],
int dst[2048][2048])
{
inti,j;
for (i=0; i< 2048; i++)
for (j = 0; j < 2048; j++)
dst[i][j] = src(i][i;
}

void copyji(int src[2048][2048],
int dst[2048][2048])

{
inti,j;

)or (j = 0;) <2048; j++)
~for (i=0;i<2048; i++)
dst[i][i] = src[illil;

}

m Hierarchical memory organization

21 times slower
(Pentium 4)

m Performance depends on access patterns

" |ncluding how step through multi-dimensional array

Carnegie Mello

The Memory Mountain

Read throughput (MB/s)

Pentium Il Xeon
1200“

550 MHz

16 KB on-chip L1 d-cache
16 KB on-chip L1 i-cache
512 KB off-chip unified
L2 cache

1000

800

600

200

X
O
N
~—

« Working set size (bytes)

2
N
~
o]

Great Reality #4: There’s more to

performance than asymptotic complexity

m Constant factors matter too!
m And even exact op count does not predict performance

= Easily see 10:1 performance range depending on how code written
= Must optimize at multiple levels: algorithm, data representations,
procedures, and loops
m Must understand system to optimize performance
" How programs compiled and executed
" How to measure program performance and identify bottlenecks

" How to improve performance without destroying code modularity and
generality

Example Matrix Multiplication

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)

Gflop/s
N
sTe8 Best code (K. Goto)
20008
1208
Triple loop
"o 2am ame o o

“- [. . ° [
m Standard desktop computer, vendor compiler, using optimization flags

m Both implementations have exactly the same operations count (2n3)
m What is going on?

Carnegie Mello

MMM Plot: Analysis

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz

Gflop/s
L
TR
Multiple threads: 4x

20008
12008

a Vector instructions: 4x

0 " * *Memory hierarchy and other optimizations: 20x .
| 2,289 4,500 479 A0

ool gl
m Reason for 20x: Blocking or tiling, loop unrolling, array scalarization,

instruction scheduling, search to find best choice
m Effect: less register spills, less L1/L2 cache misses, less TLB misses

Carnegie Mello

Great Reality #5:
Computers do more than execute
programs

m They need to get data in and out
= |/O system critical to program reliability and performance

m They communicate with each other over networks
"= Many system-level issues arise in presence of network
= Concurrent operations by autonomous processes
= Coping with unreliable media
= Cross platform compatibility
= Complex performance issues

Carnegie Mello

Role within CS/ECE Curriculum

CS 412 ECE 545/549
0S Practicum Capstone
CS 415 CS 441 = 410. CS 411 ECE 340 ECE 447 gaashe gaa s
Operating . Digital . Embedded Embedded
Databases Networks Compilers . Architecture
Systems Computation Systems System Eng.

\ N t / / /
Network Processes Machine

Data Reps. Execution Model

Protocols Mem. Mgmt Code Arithmetic
Memory Model Memory System

Foundation of Computer Systems
Underlying principles for hardware,
software, and networking

CS 123
C Programming

Carnegie Mello

Course Perspective

m Most Systems Courses are Builder-Centric
= Computer Architecture
= Design pipelined processor in Verilog
® QOperating Systems
= Implement large portions of operating system
= Compilers
= Write compiler for simple language
= Networking
= Implement and simulate network protocols

Carnegie Mello

Course Perspective (Cont.)

m Our Course is Programmer-Centric

= Purpose is to show how by knowing more about the underlying system,
one can be more effective as a programmer

Enable you to
= Write programs that are more reliable and efficient
= |[ncorporate features that require hooks into OS
— E.g., concurrency, signal handlers
= Not just a course for dedicated hackers
= We bring out the hidden hacker in everyone
= Cover material in this course that you won’t see elsewhere

Carnegie Mello

Course Components

m Lectures

= Higher level concepts

m Recitations

= Applied concepts, important tools and skills for labs, clarification of
lectures, exam coverage

m Labs (7)

= The heart of the course

= 1-2 weeks each

" Provide in-depth understanding of an aspect of systems
® Programming and measurement

m Exams (2)

" Test your understanding of concepts & mathematical principles

Carnegie Mello

Programs and Data

m Topics
= Bits operations, arithmetic, assembly language programs
= Representation of C control and data structures
" Includes aspects of architecture and compilers

m Assignments
= L1 (datalab): Manipulating bits
= |2 (bomblab): Defusing a binary bomb
= |3 (buflab): Hacking a buffer bomb

Carnegie Mello

The Memory Hierarchy

m Topics
= Memory technology, memory hierarchy, caches, disks, locality
" Includes aspects of architecture and OS

Carnegie Mello

Performance

m Topics
= Co-optimization (control and data), measuring time on a computer
" Includes aspects of architecture, compilers, and OS

m Assignments
® L4 (cachelab): Build cache simulator, optimize matrix operations

Carnegie Mello

Exceptional Control Flow

m Topics

= Hardware exceptions, processes, process control, Unix signals,
nonlocal jumps

" Includes aspects of compilers, OS, and architecture

m Assignments
= L5 (tshlab): Writing your own shell with job control

Carnegie Mello

Virtual Memory

m Topics
= Virtual memory, address translation, dynamic storage allocation
" Includes aspects of architecture and OS

m Assignments
= L6 (malloclab): Writing your own malloc package
= Get a real feel for systems programming

Carnegie Mello

Networking, and Concurrency

m Topics
= High level and low-level 1/0, network programming
" |nternet services, Web servers
® concurrency, concurrent server design, threads

|/0 multiplexing with select

Includes aspects of networking, OS, and architecture

m Assignments
= L7 (proxylab): Writing your own Web proxy

Carnegie Mello

Have Fun!

