
Carnegie Mellon

Course Overview
15-213/18-243: Introduction to Computer Systems
1st Lecture, 18 May 2011

Instructors:

Gregory Kesden

The course that gives CMU its “Zip”!

Carnegie Mellon

Overview

 Course theme

 Five realities

 How the course fits into the CS/ECE curriculum

 Logistics

Carnegie Mellon

Course Theme:
Abstraction Is Good But Don’t Forget Reality

 Most CS and CE courses emphasize abstraction

 Abstract data types

 Asymptotic analysis

 These abstractions have limits
 Especially in the presence of bugs

 Need to understand details of underlying implementations

 Useful outcomes
 Become more effective programmers

 Able to find and eliminate bugs efficiently

 Able to understand and tune for program performance

 Prepare for later “systems” classes in CS & ECE

 Compilers, Operating Systems, Networks, Computer Architecture,
Embedded Systems

Carnegie Mellon

Great Reality #1:
Ints are not Integers, Floats are not Reals
 Example 1: Is x2 ≥ 0?

 Float’s: Yes!

 Int’s:

 40000 * 40000 ➙ 1600000000

 50000 * 50000 ➙ ??

 Example 2: Is (x + y) + z = x + (y + z)?
 Unsigned & Signed Int’s: Yes!

 Float’s:

 (1e20 + -1e20) + 3.14 --> 3.14

 1e20 + (-1e20 + 3.14) --> ??
xkcd.com/571

Carnegie Mellon

Code Security Example
/* Kernel memory region holding user-accessible data */

#define KSIZE 1024

char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */

int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

}

 Similar to code found in FreeBSD’s implementation of
getpeername

 There are legions of smart people trying to find vulnerabilities
in programs

Carnegie Mellon

Typical Usage
/* Kernel memory region holding user-accessible data */

#define KSIZE 1024

char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */

int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

}

#define MSIZE 528

void getstuff() {

char mybuf[MSIZE];

copy_from_kernel(mybuf, MSIZE);

printf(“%s\n”, mybuf);

}

Carnegie Mellon

Malicious Usage

#define MSIZE 528

void getstuff() {

char mybuf[MSIZE];

copy_from_kernel(mybuf, -MSIZE);

. . .

}

/* Kernel memory region holding user-accessible data */

#define KSIZE 1024

char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */

int copy_from_kernel(void *user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen */

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

}

Carnegie Mellon

Computer Arithmetic

 Does not generate random values

 Arithmetic operations have important mathematical properties

 Cannot assume all “usual” mathematical properties
 Due to finiteness of representations

 Integer operations satisfy “ring” properties

 Commutativity, associativity, distributivity

 Floating point operations satisfy “ordering” properties

 Monotonicity, values of signs

 Observation

 Need to understand which abstractions apply in which contexts

 Important issues for compiler writers and serious application programmers

Carnegie Mellon

Great Reality #2:
You’ve Got to Know Assembly
 Chances are, you’ll never write programs in assembly

 Compilers are much better & more patient than you are

 But: Understanding assembly is key to machine-level execution
model
 Behavior of programs in presence of bugs

 High-level language models break down

 Tuning program performance

 Understand optimizations done / not done by the compiler

 Understanding sources of program inefficiency

 Implementing system software

 Compiler has machine code as target

 Operating systems must manage process state

 Creating / fighting malware

 x86 assembly is the language of choice!

Carnegie Mellon

Assembly Code Example

 Time Stamp Counter

 Special 64-bit register in Intel-compatible machines

 Incremented every clock cycle

 Read with rdtsc instruction

 Application

 Measure time (in clock cycles) required by procedure

double t;

start_counter();

P();

t = get_counter();

printf("P required %f clock cycles\n", t);

Carnegie Mellon

Code to Read Counter

 Write small amount of assembly code using GCC’s asm facility

 Inserts assembly code into machine code generated by
compiler

static unsigned cyc_hi = 0;

static unsigned cyc_lo = 0;

/* Set *hi and *lo to the high and low order bits

of the cycle counter.

*/

void access_counter(unsigned *hi, unsigned *lo)

{

asm("rdtsc; movl %%edx,%0; movl %%eax,%1"

: "=r" (*hi), "=r" (*lo)

:

: "%edx", "%eax");

}

Carnegie Mellon

Great Reality #3: Memory Matters
Random Access Memory Is an Unphysical Abstraction

 Memory is not unbounded

 It must be allocated and managed

 Many applications are memory dominated

 Memory referencing bugs especially pernicious

 Effects are distant in both time and space

 Memory performance is not uniform

 Cache and virtual memory effects can greatly affect program performance

 Adapting program to characteristics of memory system can lead to major
speed improvements

Carnegie Mellon

Memory Referencing Bug Example
double fun(int i)

{

volatile double d[1] = {3.14};

volatile long int a[2];

a[i] = 1073741824; /* Possibly out of bounds */

return d[0];

}

fun(0) ➙ 3.14

fun(1) ➙ 3.14

fun(2) ➙ 3.1399998664856

fun(3) ➙ 2.00000061035156

fun(4) ➙ 3.14, then segmentation fault

Result is architecture specific

 I execute up to fun(11) on my Core 2 Duo Mac

Carnegie Mellon

Memory Referencing Bug Example
double fun(int i)

{

volatile double d[1] = {3.14};

volatile long int a[2];

a[i] = 1073741824; /* Possibly out of bounds */

return d[0];

}

fun(0) ➙ 3.14

fun(1) ➙ 3.14

fun(2) ➙ 3.1399998664856

fun(3) ➙ 2.00000061035156

fun(4) ➙ 3.14, then segmentation fault

Location accessed by

fun(i)

Explanation: Saved State 4

d7 ... d4 3

d3 ... d0 2

a[1] 1

a[0] 0

Carnegie Mellon

Memory Referencing Errors

 C and C++ do not provide any memory protection

 Out of bounds array references

 Invalid pointer values

 Abuses of malloc/free

 Can lead to nasty bugs

 Whether or not bug has any effect depends on system and compiler

 Action at a distance

 Corrupted object logically unrelated to one being accessed

 Effect of bug may be first observed long after it is generated

 How can I deal with this?
 Program in Java, Ruby or ML

 Understand what possible interactions may occur

 Use or develop tools to detect referencing errors

Carnegie Mellon

Memory System Performance Example

 Hierarchical memory organization

 Performance depends on access patterns

 Including how step through multi-dimensional array

void copyji(int src[2048][2048],

int dst[2048][2048])

{

int i,j;

for (j = 0; j < 2048; j++)

for (i = 0; i < 2048; i++)

dst[i][j] = src[i][j];

}

void copyij(int src[2048][2048],

int dst[2048][2048])

{

int i,j;

for (i = 0; i < 2048; i++)

for (j = 0; j < 2048; j++)

dst[i][j] = src[i][j];

}

21 times slower
(Pentium 4)

Carnegie Mellon

The Memory Mountain

s
1

s
3

s
5

s
7

s
9

s
1
1

s
1

3

s
1

5

8m

2m 51
2k 12

8k

32
k 8k

2k

0

200

400

600

800

1000

1200

Read throughput (MB/s)

Stride (words) Working set size (bytes)

Pentium III Xeon
550 MHz
16 KB on-chip L1 d-cache
16 KB on-chip L1 i-cache
512 KB off-chip unified
L2 cache

L1

L2

Mem

Carnegie Mellon

Great Reality #4: There’s more to
performance than asymptotic complexity

 Constant factors matter too!

 And even exact op count does not predict performance

 Easily see 10:1 performance range depending on how code written

 Must optimize at multiple levels: algorithm, data representations,
procedures, and loops

 Must understand system to optimize performance
 How programs compiled and executed

 How to measure program performance and identify bottlenecks

 How to improve performance without destroying code modularity and
generality

Carnegie Mellon

Example Matrix Multiplication

 Standard desktop computer, vendor compiler, using optimization flags

 Both implementations have exactly the same operations count (2n3)

 What is going on?

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)
Gflop/s

160x

Triple loop

Best code (K. Goto)

Carnegie Mellon

MMM Plot: Analysis

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz
Gflop/s

Memory hierarchy and other optimizations: 20x

Vector instructions: 4x

Multiple threads: 4x

 Reason for 20x: Blocking or tiling, loop unrolling, array scalarization,
instruction scheduling, search to find best choice

 Effect: less register spills, less L1/L2 cache misses, less TLB misses

Carnegie Mellon

Great Reality #5:
Computers do more than execute
programs

 They need to get data in and out

 I/O system critical to program reliability and performance

 They communicate with each other over networks
 Many system-level issues arise in presence of network

 Concurrent operations by autonomous processes

 Coping with unreliable media

 Cross platform compatibility

 Complex performance issues

Carnegie Mellon

Role within CS/ECE Curriculum

CS 410
Operating
Systems

CS 410
Operating
Systems

CS 411
Compilers
CS 411
Compilers

Processes
Mem. Mgmt

CS 441
Networks
CS 441
Networks

Network
Protocols

ECE 447
Architecture
ECE 447
Architecture

ECE 349
Embedded
Systems

ECE 349
Embedded
Systems

CS 412
OS Practicum
CS 412
OS Practicum

CS 123
C Programming
CS 123
C Programming

CS 415
Databases
CS 415
Databases

Data Reps.
Memory Model

ECE 340
Digital
Computation

ECE 340
Digital
Computation

Machine
Code Arithmetic

ECE 348
Embedded
System Eng.

ECE 348
Embedded
System Eng.

Foundation of Computer Systems
Underlying principles for hardware,
software, and networking

Execution Model
Memory System

CS 213
ECE 243
CS 213

ECE 243

ECE 545/549
Capstone
ECE 545/549
Capstone

Carnegie Mellon

Course Perspective

 Most Systems Courses are Builder-Centric

 Computer Architecture

 Design pipelined processor in Verilog

 Operating Systems

 Implement large portions of operating system

 Compilers

 Write compiler for simple language

 Networking

 Implement and simulate network protocols

Carnegie Mellon

Course Perspective (Cont.)

 Our Course is Programmer-Centric

 Purpose is to show how by knowing more about the underlying system,
one can be more effective as a programmer

 Enable you to

 Write programs that are more reliable and efficient

 Incorporate features that require hooks into OS

– E.g., concurrency, signal handlers

 Not just a course for dedicated hackers

 We bring out the hidden hacker in everyone

 Cover material in this course that you won’t see elsewhere

Carnegie Mellon

Course Components

 Lectures

 Higher level concepts

 Recitations
 Applied concepts, important tools and skills for labs, clarification of

lectures, exam coverage

 Labs (7)
 The heart of the course

 1-2 weeks each

 Provide in-depth understanding of an aspect of systems

 Programming and measurement

 Exams (2)

 Test your understanding of concepts & mathematical principles

Carnegie Mellon

Programs and Data

 Topics

 Bits operations, arithmetic, assembly language programs

 Representation of C control and data structures

 Includes aspects of architecture and compilers

 Assignments

 L1 (datalab): Manipulating bits

 L2 (bomblab): Defusing a binary bomb

 L3 (buflab): Hacking a buffer bomb

Carnegie Mellon

The Memory Hierarchy

 Topics

 Memory technology, memory hierarchy, caches, disks, locality

 Includes aspects of architecture and OS

Carnegie Mellon

Performance

 Topics

 Co-optimization (control and data), measuring time on a computer

 Includes aspects of architecture, compilers, and OS

 Assignments
 L4 (cachelab): Build cache simulator, optimize matrix operations

Carnegie Mellon

Exceptional Control Flow

 Topics

 Hardware exceptions, processes, process control, Unix signals,
nonlocal jumps

 Includes aspects of compilers, OS, and architecture

 Assignments

 L5 (tshlab): Writing your own shell with job control

Carnegie Mellon

Virtual Memory

 Topics

 Virtual memory, address translation, dynamic storage allocation

 Includes aspects of architecture and OS

 Assignments

 L6 (malloclab): Writing your own malloc package

 Get a real feel for systems programming

Carnegie Mellon

Networking, and Concurrency

 Topics

 High level and low-level I/O, network programming

 Internet services, Web servers

 concurrency, concurrent server design, threads

 I/O multiplexing with select

 Includes aspects of networking, OS, and architecture

 Assignments

 L7 (proxylab): Writing your own Web proxy

Carnegie Mellon

Have Fun!

