
Carnegie Mellon

1

Exceptional Control Flow:
Signals and Nonlocal Jumps

15-213/18-243: Introduction to Computer Systems
14th Lecture, 21 June 2012

Instructors:

Gregory Kesden

Carnegie Mellon

2

ECF Exists at All Levels of a System

 Exceptions
 Hardware and operating system kernel software

 Process Context Switch
 Hardware timer and kernel software

 Signals
 Kernel software

 Nonlocal jumps
 Application code

Previous Lecture

This Lecture

Carnegie Mellon

3

Today

 Multitasking, shells

 Signals

 Nonlocal jumps

Carnegie Mellon

4

The World of Multitasking

 System runs many processes concurrently

 Process: executing program
 State includes memory image + register values + program counter

 Regularly switches from one process to another
 Suspend process when it needs I/O resource or timer event occurs

 Resume process when I/O available or given scheduling priority

 Appears to user(s) as if all processes executing simultaneously
 Even though most systems can only execute one process at a time

 Except possibly with lower performance than if running alone

Carnegie Mellon

5

Programmer’s Model of Multitasking

 Basic functions
 fork spawns new process

 Called once, returns twice

 exit terminates own process

 Called once, never returns

 Puts it into “zombie” status

 wait and waitpid wait for and reap terminated children

 execve runs new program in existing process

 Called once, (normally) never returns

 Programming challenge
 Understanding the nonstandard semantics of the functions

 Avoiding improper use of system resources

 E.g. “Fork bombs” can disable a system

Carnegie Mellon

6

Unix Process Hierarchy

Login shell

Child Child Child

Grandchild Grandchild

[0]

Daemon
e.g. httpd

init [1]

Carnegie Mellon

7

Shell Programs
 A shell is an application program that runs programs on

behalf of the user.
 sh Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)

 csh BSD Unix C shell (tcsh: enhanced csh at CMU and elsewhere)

 bash “Bourne-Again” Shell

int main() {

 char cmdline[MAXLINE];

 while (1) {

 /* read */

 printf("> ");

 Fgets(cmdline, MAXLINE, stdin);

 if (feof(stdin))

 exit(0);

 /* evaluate */

 eval(cmdline);

 }

}

Execution is a sequence of
read/evaluate steps

Carnegie Mellon

8

Simple Shell eval Function
void eval(char *cmdline) {

 char *argv[MAXARGS]; /* argv for execve() */

 int bg; /* should the job run in bg or fg? */

 pid_t pid; /* process id */

 bg = parseline(cmdline, argv);

 if (!builtin_command(argv)) {

 if ((pid = Fork()) == 0) { /* child runs user job */

 if (execve(argv[0], argv, environ) < 0) {

 printf("%s: Command not found.\n", argv[0]);

 exit(0);

 }

 }

 if (!bg) { /* parent waits for fg job to terminate */

 int status;

 if (waitpid(pid, &status, 0) < 0)

 unix_error("waitfg: waitpid error");

 }

 else /* otherwise, don’t wait for bg job */

 printf("%d %s", pid, cmdline);

 }

}

Carnegie Mellon

9

What Is a “Background Job”?

 Users generally run one command at a time
 Type command, read output, type another command

 Some programs run “for a long time”
 Example: “delete this file in two hours”

 A “background” job is a process we don't want to wait for

unix> sleep 7200; rm /tmp/junk # shell stuck for 2 hours

unix> (sleep 7200 ; rm /tmp/junk) &

[1] 907

unix> # ready for next command

Carnegie Mellon

10

Problem with Simple Shell Example

 Our example shell correctly waits for and reaps foreground
jobs

 But what about background jobs?
 Will become zombies when they terminate

 Will never be reaped because shell (typically) will not terminate

 Will create a memory leak that could run the kernel out of memory

 Modern Unix: once you exceed your process quota, your shell can't run
any new commands for you: fork() returns -1

unix> limit maxproc # csh syntax

maxproc 202752
unix> ulimit -u # bash syntax

202752

Carnegie Mellon

11

ECF to the Rescue!

 Problem
 The shell doesn't know when a background job will finish

 By nature, it could happen at any time

 The shell's regular control flow can't reap exited background processes in
a timely fashion

 Regular control flow is “wait until running job completes, then reap it”

 Solution: Exceptional control flow
 The kernel will interrupt regular processing to alert us when a background

process completes

 In Unix, the alert mechanism is called a signal

Carnegie Mellon

12

Today

 Multitasking, shells

 Signals

 Nonlocal jumps

Carnegie Mellon

13

Signals

 A signal is a small message that notifies a process that an
event of some type has occurred in the system
 akin to exceptions and interrupts

 sent from the kernel (sometimes at the request of another process) to a
process

 signal type is identified by small integer ID’s (1-30)

 only information in a signal is its ID and the fact that it arrived

ID Name Default Action Corresponding Event

2 SIGINT Terminate Interrupt (e.g., ctl-c from keyboard)

9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate & Dump Segmentation violation

14 SIGALRM Terminate Timer signal

17 SIGCHLD Ignore Child stopped or terminated

Carnegie Mellon

14

Sending a Signal

 Kernel sends (delivers) a signal to a destination process by
updating some state in the context of the destination process

 Kernel sends a signal for one of the following reasons:
 Kernel has detected a system event such as divide-by-zero (SIGFPE) or

the termination of a child process (SIGCHLD)

 Another process has invoked the kill system call to explicitly request
the kernel to send a signal to the destination process

Carnegie Mellon

15

Receiving a Signal

 A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

 Three possible ways to react:
 Ignore the signal (do nothing)

 Terminate the process (with optional core dump)

 Catch the signal by executing a user-level function called signal handler

 Akin to a hardware exception handler being called in response to an
asynchronous interrupt

Carnegie Mellon

16

Pending and Blocked Signals

 A signal is pending if sent but not yet received
 There can be at most one pending signal of any particular type

 Important: Signals are not queued

 If a process has a pending signal of type k, then subsequent signals of
type k that are sent to that process are discarded

 A process can block the receipt of certain signals
 Blocked signals can be delivered, but will not be received until the signal

is unblocked

 A pending signal is received at most once

Carnegie Mellon

17

Signal Concepts

 Kernel maintains pending and blocked bit vectors in the
context of each process
 pending: represents the set of pending signals

 Kernel sets bit k in pending when a signal of type k is delivered

 Kernel clears bit k in pending when a signal of type k is received

 blocked: represents the set of blocked signals

 Can be set and cleared by using the sigprocmask function

Carnegie Mellon

18

Process Groups

 Every process belongs to exactly one process group

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10

pgid=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pid=20

pgid=20
pid=32

pgid=32
pid=40

pgid=40

pid=21

pgid=20

pid=22

pgid=20

getpgrp()
Return process group of current process

setpgid()

Change process group of a process

Carnegie Mellon

19

Sending Signals with /bin/kill Program

 /bin/kill program
sends arbitrary signal to a
process or process group

 Examples
 /bin/kill –9 24818

Send SIGKILL to process 24818

 /bin/kill –9 –24817

Send SIGKILL to every process
in process group 24817

linux> ./forks 16

Child1: pid=24818 pgrp=24817

Child2: pid=24819 pgrp=24817

linux> ps

 PID TTY TIME CMD

24788 pts/2 00:00:00 tcsh

24818 pts/2 00:00:02 forks

24819 pts/2 00:00:02 forks

24820 pts/2 00:00:00 ps

linux> /bin/kill -9 -24817

linux> ps

 PID TTY TIME CMD

24788 pts/2 00:00:00 tcsh

24823 pts/2 00:00:00 ps

linux>

Carnegie Mellon

20

Sending Signals from the Keyboard
 Typing ctrl-c (ctrl-z) sends a SIGINT (SIGTSTP) to every job in the

foreground process group.
 SIGINT – default action is to terminate each process

 SIGTSTP – default action is to stop (suspend) each process

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10

pgid=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pid=20

pgid=20
pid=32

pgid=32
pid=40

pgid=40

pid=21

pgid=20

pid=22

pgid=20

Carnegie Mellon

21

Example of ctrl-c and ctrl-z
bluefish> ./forks 17

Child: pid=28108 pgrp=28107

Parent: pid=28107 pgrp=28107

<types ctrl-z>

Suspended

bluefish> ps w

 PID TTY STAT TIME COMMAND

27699 pts/8 Ss 0:00 -tcsh

28107 pts/8 T 0:01 ./forks 17

28108 pts/8 T 0:01 ./forks 17

28109 pts/8 R+ 0:00 ps w

bluefish> fg

./forks 17

<types ctrl-c>

bluefish> ps w

 PID TTY STAT TIME COMMAND

27699 pts/8 Ss 0:00 -tcsh

28110 pts/8 R+ 0:00 ps w

STAT (process state) Legend:

First letter:
S: sleeping
T: stopped
R: running

Second letter:
s: session leader
+: foreground proc group

See “man ps” for more
details

Carnegie Mellon

22

Sending Signals with kill Function
void fork12()

{

 pid_t pid[N];

 int i, child_status;

 for (i = 0; i < N; i++)

 if ((pid[i] = fork()) == 0)

 while(1); /* Child infinite loop */

 /* Parent terminates the child processes */

 for (i = 0; i < N; i++) {

 printf("Killing process %d\n", pid[i]);

 kill(pid[i], SIGINT);

 }

 /* Parent reaps terminated children */

 for (i = 0; i < N; i++) {

 pid_t wpid = wait(&child_status);

 if (WIFEXITED(child_status))

 printf("Child %d terminated with exit status %d\n",

 wpid, WEXITSTATUS(child_status));

 else

 printf("Child %d terminated abnormally\n", wpid);

 }

}

Carnegie Mellon

23

Receiving Signals
 Suppose kernel is returning from an exception handler

and is ready to pass control to process p

 Kernel computes pnb = pending & ~blocked
 The set of pending nonblocked signals for process p

 If (pnb == 0)

 Pass control to next instruction in the logical flow for p

 Else
 Choose least nonzero bit k in pnb and force process p to receive

signal k

 The receipt of the signal triggers some action by p

 Repeat for all nonzero k in pnb

 Pass control to next instruction in logical flow for p

Carnegie Mellon

24

Default Actions

 Each signal type has a predefined default action, which is
one of:
 The process terminates

 The process terminates and dumps core

 The process stops until restarted by a SIGCONT signal

 The process ignores the signal

Carnegie Mellon

25

Installing Signal Handlers
 The signal function modifies the default action associated

with the receipt of signal signum:
 handler_t *signal(int signum, handler_t *handler)

 Different values for handler:
 SIG_IGN: ignore signals of type signum

 SIG_DFL: revert to the default action on receipt of signals of type signum

 Otherwise, handler is the address of a signal handler

 Called when process receives signal of type signum

 Referred to as “installing” the handler

 Executing handler is called “catching” or “handling” the signal

 When the handler executes its return statement, control passes back
to instruction in the control flow of the process that was interrupted
by receipt of the signal

Carnegie Mellon

26

Signal Handling Example
void int_handler(int sig) {

 safe_printf("Process %d received signal %d\n", getpid(), sig);

 exit(0);

}

void fork13() {

 pid_t pid[N];

 int i, child_status;

 signal(SIGINT, int_handler);

 for (i = 0; i < N; i++)

 if ((pid[i] = fork()) == 0) {

 while(1); /* child infinite loop

 }

 for (i = 0; i < N; i++) {

 printf("Killing process %d\n", pid[i]);

 kill(pid[i], SIGINT);

 }

 for (i = 0; i < N; i++) {

 pid_t wpid = wait(&child_status);

 if (WIFEXITED(child_status))

 printf("Child %d terminated with exit status %d\n",

 wpid, WEXITSTATUS(child_status));

 else

 printf("Child %d terminated abnormally\n", wpid);

 }

}

linux> ./forks 13

Killing process 25417

Killing process 25418

Killing process 25419

Killing process 25420

Killing process 25421

Process 25417 received signal 2

Process 25418 received signal 2

Process 25420 received signal 2

Process 25421 received signal 2

Process 25419 received signal 2

Child 25417 terminated with exit status 0

Child 25418 terminated with exit status 0

Child 25420 terminated with exit status 0

Child 25419 terminated with exit status 0

Child 25421 terminated with exit status 0

linux>

Carnegie Mellon

27

Signals Handlers as Concurrent Flows

 A signal handler is a separate logical flow (not process) that
runs concurrently with the main program
 “concurrently” in the “not sequential” sense

Process A

while (1)

 ;

Process A

handler(){

 …

}

Process B

Time

Carnegie Mellon

28

Another View of Signal Handlers as
Concurrent Flows

Signal delivered

Signal received

Process A Process B

user code (main)

kernel code

user code (main)

kernel code

user code (handler)

context switch

context switch

kernel code

user code (main)

Icurr

Inext

Carnegie Mellon

29

Signal Handler Funkiness
 Pending signals are not

queued

 For each signal type, just
have single bit indicating
whether or not signal is
pending

 Even if multiple processes
have sent this signal

int ccount = 0;

void child_handler(int sig)

{

 int child_status;

 pid_t pid = wait(&child_status);

 ccount--;

 safe_printf(

 "Received signal %d from process %d\n",

 sig, pid);

}

void fork14()

{

 pid_t pid[N];

 int i, child_status;

 ccount = N;

 signal(SIGCHLD, child_handler);

 for (i = 0; i < N; i++)

 if ((pid[i] = fork()) == 0) {

 sleep(1); /* deschedule child */

 exit(0); /* Child: Exit */

 }

 while (ccount > 0)

 pause(); /* Suspend until signal occurs */

}

linux> ./forks 14

Received SIGCHLD signal 17 for process 21344

Received SIGCHLD signal 17 for process 21345

Carnegie Mellon

30

Living With Nonqueuing Signals

 Must check for all terminated jobs
 Typically loop with wait

void child_handler2(int sig)

{

 int child_status;

 pid_t pid;

 while ((pid = waitpid(-1, &child_status, WNOHANG)) > 0) {

 ccount--;

 safe_printf("Received signal %d from process %d\n",

 sig, pid);

 }

}

void fork15()

{

 . . .

 signal(SIGCHLD, child_handler2);

 . . .

}

greatwhite> forks 15

Received signal 17 from process 27476

Received signal 17 from process 27477

Received signal 17 from process 27478

Received signal 17 from process 27479

Received signal 17 from process 27480

greatwhite>

Carnegie Mellon

31

More Signal Handler Funkiness

 Signal arrival during long system calls (say a read)

 Signal handler interrupts read call
 Linux: upon return from signal handler, the read call is restarted

automatically

 Some other flavors of Unix can cause the read call to fail with an
EINTER error number (errno)
in this case, the application program can restart the slow system call

 Subtle differences like these complicate the writing of
portable code that uses signals
 Consult your textbook for details

Carnegie Mellon

32

A Program That Reacts to
Externally Generated Events (Ctrl-c)
#include <stdlib.h>

#include <stdio.h>

#include <signal.h>

void handler(int sig) {

 safe_printf("You think hitting ctrl-c will stop the bomb?\n");

 sleep(2);

 safe_printf("Well...");

 sleep(1);

 printf("OK\n");

 exit(0);

}

main() {

 signal(SIGINT, handler); /* installs ctl-c handler */

 while(1) {

 }

}

external.c

linux> ./external

<ctrl-c>

You think hitting ctrl-c will stop

the bomb?

Well...OK

linux>

Carnegie Mellon

33

A Program That Reacts to Internally
Generated Events

#include <stdio.h>

#include <signal.h>

int beeps = 0;

/* SIGALRM handler */

void handler(int sig) {

 safe_printf("BEEP\n");

 if (++beeps < 5)

 alarm(1);

 else {

 safe_printf("BOOM!\n");

 exit(0);

 }

}

main() {

 signal(SIGALRM, handler);

 alarm(1); /* send SIGALRM in

 1 second */

 while (1) {

 /* handler returns here */

 }

}

linux> ./internal

BEEP

BEEP

BEEP

BEEP

BEEP

BOOM!

bass>

internal.c

Carnegie Mellon

34

Async-Signal-Safety

 Function is async-signal-safe if either reentrant (all variables
stored on stack frame, CS:APP2e 12.7.2) or non-interruptible
by signals.

 Posix guarantees 117 functions to be async-signal-safe
 write is on the list, printf is not

 One solution: async-signal-safe wrapper for printf:

void safe_printf(const char *format, ...) {

 char buf[MAXS];

 va_list args;

 va_start(args, format); /* reentrant */

 vsnprintf(buf, sizeof(buf), format, args); /* reentrant */

 va_end(args); /* reentrant */

 write(1, buf, strlen(buf)); /* async-signal-safe */

}

safe_printf.c

Carnegie Mellon

35

Today

 Multitasking, shells

 Signals

 Nonlocal jumps

Carnegie Mellon

36

Nonlocal Jumps: setjmp/longjmp

 Powerful (but dangerous) user-level mechanism for
transferring control to an arbitrary location
 Controlled to way to break the procedure call / return discipline

 Useful for error recovery and signal handling

 int setjmp(jmp_buf j)

 Must be called before longjmp

 Identifies a return site for a subsequent longjmp

 Called once, returns one or more times

 Implementation:
 Remember where you are by storing the current register context,

stack pointer, and PC value in jmp_buf

 Return 0

Carnegie Mellon

37

setjmp/longjmp (cont)

 void longjmp(jmp_buf j, int i)

 Meaning:

 return from the setjmp remembered by jump buffer j again ...

 … this time returning i instead of 0

 Called after setjmp

 Called once, but never returns

 longjmp Implementation:

 Restore register context (stack pointer, base pointer, PC value) from
jump buffer j

 Set %eax (the return value) to i

 Jump to the location indicated by the PC stored in jump buf j

Carnegie Mellon

38

setjmp/longjmp Example

#include <setjmp.h>

jmp_buf buf;

main() {

 if (setjmp(buf) != 0) {

 printf("back in main due to an error\n");

 else

 printf("first time through\n");

 p1(); /* p1 calls p2, which calls p3 */

}

...

p3() {

 <error checking code>

 if (error)

 longjmp(buf, 1)

}

Carnegie Mellon

39

Limitations of Nonlocal Jumps
 Works within stack discipline

 Can only long jump to environment of function that has been called
but not yet completed

jmp_buf env;

P1()

{

 if (setjmp(env)) {

 /* Long Jump to here */

 } else {

 P2();

 }

}

P2()

{ . . . P2(); . . . P3(); }

P3()

{

 longjmp(env, 1);

}

P1

P2

P2

P2

P3

env

P1

Before longjmp After longjmp

Carnegie Mellon

40

Limitations of Long Jumps (cont.)
 Works within stack discipline

 Can only long jump to environment of function that has been called
but not yet completed

jmp_buf env;

P1()

{

 P2(); P3();

}

P2()

{

 if (setjmp(env)) {

 /* Long Jump to here */

 }

}

P3()

{

 longjmp(env, 1);

}

env

P1

P2

At setjmp

P1

P3
env

At longjmp

X

P1

P2

P2 returns

env

X

Carnegie Mellon

41

Putting It All Together: A Program
That Restarts Itself When ctrl-c’d
#include <stdio.h>

#include <signal.h>

#include <setjmp.h>

sigjmp_buf buf;

void handler(int sig) {

 siglongjmp(buf, 1);

}

main() {

 signal(SIGINT, handler);

 if (!sigsetjmp(buf, 1))

 printf("starting\n");

 else

 printf("restarting\n");

 while(1) {

 sleep(1);

 printf("processing...\n");

 }

} restart.c

greatwhite> ./restart

starting

processing...

processing...

processing...

restarting

processing...

processing...

restarting

processing...

processing...

processing...

Ctrl-c

Ctrl-c

Carnegie Mellon

42

Summary

 Signals provide process-level exception handling
 Can generate from user programs

 Can define effect by declaring signal handler

 Some caveats
 Very high overhead

 >10,000 clock cycles

 Only use for exceptional conditions

 Don’t have queues

 Just one bit for each pending signal type

 Nonlocal jumps provide exceptional control flow within
process
 Within constraints of stack discipline

