
Carnegie Mellon

1

Virtual Memory: Concepts

15-213/18-243: Introduction to Computer Systems
17th Lecture, 29 June, 2011

Instructors:

Gregory Kesden

Carnegie Mellon

2

Exam 2 Update

 Thursday April 21 during Lecture
 Will not include Advanced Synchronization or Thread-Level

Parallelism

 Moved up 1 week to avoid proxylab collision

 Helps reduce last week of classes rush

Carnegie Mellon

3

Today

 Virtual Memory (VM) overview and motivation

 VM as a tool for caching

 VM as a tool for memory management

 VM as a tool for memory protection

 Address translation

Carnegie Mellon

4

 Programs refer to virtual memory addresses
 movl (%ecx),%eax

 Conceptually very large array of bytes

 Each byte has its own address

 Actually implemented with hierarchy of different
memory types

 System provides address space private to particular
“process”

 Allocation: Compiler and run-time system
 Where different program objects should be stored

 All allocation within single virtual address space

 But why virtual memory?

 Why not physical memory?

Virtual Memory Abstraction

00∙∙∙∙∙∙0

FF∙∙∙∙∙∙F

Carnegie Mellon

5

Problem 1: How Does Everything Fit?

64-bit addresses:
16 Exabyte

Physical main memory:
Few Gigabytes

?

And there are many processes ….

Carnegie Mellon

6

Problem 2: Memory Management

Physical main memory

What goes
where?

stack
heap

.text

.data

…

Process 1
Process 2
Process 3
…
Process n

x

Carnegie Mellon

7

Problem 3: How To Protect

Physical main memory

Process i

Process j

Problem 4: How To Share?
Physical main memory

Process i

Process j

Carnegie Mellon

8

Solution: Level Of Indirection

 Each process gets its own private memory space

 Solves the previous problems

Physical memory

Virtual memory

Virtual memory

Process 1

Process n

mapping

Carnegie Mellon

9

A System Using Physical Addressing

 Used in “simple” systems like embedded microcontrollers in
devices like cars, elevators, and digital picture frames

0:
1:

M-1:

Main memory

CPU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

4

Carnegie Mellon

10

A System Using Virtual Addressing

 Used in all modern servers, desktops, and laptops

 One of the great ideas in computer science

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

CPU

Virtual address
(VA)

CPU Chip

44100

Carnegie Mellon

11

Address Spaces

 Linear address space: Ordered set of contiguous non-negative integer
addresses:

{0, 1, 2, 3 … }

 Virtual address space: Set of N = 2n virtual addresses
{0, 1, 2, 3, …, N-1}

 Physical address space: Set of M = 2m physical addresses
{0, 1, 2, 3, …, M-1}

 Clean distinction between data (bytes) and their attributes (addresses)

 Each object can now have multiple addresses

 Every byte in main memory:
one physical address, one (or more) virtual addresses

Carnegie Mellon

12

Why Virtual Memory (VM)?

 Uses main memory efficiently
 Use DRAM as a cache for the parts of a virtual address space

 Simplifies memory management
 Each process gets the same uniform linear address space

 Isolates address spaces
 One process can’t interfere with another’s memory

 User program cannot access privileged kernel information

Carnegie Mellon

13

Today

 Virtual Memory (VM) overview and motivation

 VM as a tool for caching

 VM as a tool for memory management

 VM as a tool for memory protection

 Address translation

Carnegie Mellon

14

VM as a Tool for Caching

 Virtual memory is an array of N contiguous bytes stored
on disk.

 The contents of the array on disk are cached in physical
memory (DRAM cache)
 These cache blocks are called pages (size is P = 2p bytes)

PP 2m-p-1

Physical memory

Empty

Empty

Uncached

VP 0

VP 1

VP 2n-p-1

Virtual memory

Unallocated

Cached

Uncached

Unallocated

Cached

Uncached

PP 0

PP 1

Empty

Cached

0

N-1

M-1

0

Virtual pages (VPs)
stored on disk

Physical pages (PPs)
cached in DRAM

Carnegie Mellon

15

DRAM Cache Organization

 DRAM cache organization driven by the enormous miss penalty
 DRAM is about 10x slower than SRAM

 Disk is about 10,000x slower than DRAM

 Consequences
 Large page (block) size: typically 4-8 KB, sometimes 4 MB

 Fully associative

 Any VP can be placed in any PP

 Requires a “large” mapping function – different from CPU caches

 Highly sophisticated, expensive replacement algorithms

 Too complicated and open-ended to be implemented in hardware

 Write-back rather than write-through

Carnegie Mellon

16

Page Tables

 A page table is an array of page table entries (PTEs) that
maps virtual pages to physical pages.
 Per-process kernel data structure in DRAM

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Carnegie Mellon

17

Page Hit

 Page hit: reference to VM word that is in physical memory
(DRAM cache hit)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Carnegie Mellon

18

Page Fault

 Page fault: reference to VM word that is not in physical
memory (DRAM cache miss)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Carnegie Mellon

19

Handling Page Fault
 Page miss causes page fault (an exception)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Carnegie Mellon

20

Handling Page Fault
 Page miss causes page fault (an exception)

 Page fault handler selects a victim to be evicted (here VP 4)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Carnegie Mellon

21

Handling Page Fault
 Page miss causes page fault (an exception)

 Page fault handler selects a victim to be evicted (here VP 4)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0

1

1
0

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Carnegie Mellon

22

Handling Page Fault
 Page miss causes page fault (an exception)

 Page fault handler selects a victim to be evicted (here VP 4)

 Offending instruction is restarted: page hit!

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0

1

1
0

0

1

0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Carnegie Mellon

23

Locality to the Rescue Again!

 Virtual memory works because of locality

 At any point in time, programs tend to access a set of active
virtual pages called the working set
 Programs with better temporal locality will have smaller working sets

 If (working set size < main memory size)
 Good performance for one process after compulsory misses

 If (SUM(working set sizes) > main memory size)
 Thrashing: Performance meltdown where pages are swapped (copied)

in and out continuously

Carnegie Mellon

24

Today

 Virtual Memory (VM) overview and motivation

 VM as a tool for caching

 VM as a tool for memory management

 VM as a tool for memory protection

 Address translation

Carnegie Mellon

25

VM as a Tool for Memory Management

 Key idea: each process has its own virtual address space
 It can view memory as a simple linear array

 Mapping function scatters addresses through physical memory

 Well chosen mappings simplify memory allocation and management

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1

(e.g., read-only
library code)

Virtual
Address
Space for
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

Carnegie Mellon

26

VM as a Tool for Memory Management
 Memory allocation

 Each virtual page can be mapped to any physical page

 A virtual page can be stored in different physical pages at different times

 Sharing code and data among processes
 Map virtual pages to the same physical page (here: PP 6)

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1

(e.g., read-only
library code)

Virtual
Address
Space for
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

Carnegie Mellon

27

Simplifying Linking and Loading

 Linking
 Each program has similar virtual

address space

 Code, stack, and shared libraries
always start at the same address

 Loading
 execve() allocates virtual pages

for .text and .data sections
= creates PTEs marked as invalid

 The .text and .data sections
are copied, page by page, on
demand by the virtual memory
system

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%esp

(stack
pointer)

Memory
invisible to
user code

brk

0xc0000000

0x08048000

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from
the
executable
file

Carnegie Mellon

28

Today

 Address spaces

 VM as a tool for caching

 VM as a tool for memory management

 VM as a tool for memory protection

 Address translation

Carnegie Mellon

29

VM as a Tool for Memory Protection
 Extend PTEs with permission bits

 Page fault handler checks these before remapping
 If violated, send process SIGSEGV (segmentation fault)

Process i: AddressREAD WRITE

PP 6Yes No

PP 4Yes Yes

PP 2Yes

VP 0:

VP 1:

VP 2:

•
•
•

Process j:

Yes

SUP

No

No

Yes

AddressREAD WRITE

PP 9Yes No

PP 6Yes Yes

PP 11Yes Yes

SUP

No

Yes

No

VP 0:

VP 1:

VP 2:

Physical
Address Space

PP 2

PP 4

PP 6

PP 8

PP 9

PP 11

Carnegie Mellon

30

Today

 Virtual Memory (VM) overview and motivation

 VM as a tool for caching

 VM as a tool for memory management

 VM as a tool for memory protection

 Address translation

Carnegie Mellon

31

VM Address Translation

 Virtual Address Space
 V = {0, 1, …, N–1}

 Physical Address Space
 P = {0, 1, …, M–1}

 Address Translation

 MAP: V P U {}

 For virtual address a:

 MAP(a) = a’ if data at virtual address a is at physical address a’ in P

 MAP(a) = if data at virtual address a is not in physical memory

– Either invalid or stored on disk

Carnegie Mellon

32

Summary of Address Translation Symbols

 Basic Parameters
 N = 2n : Number of addresses in virtual address space

 M = 2m : Number of addresses in physical address space

 P = 2p : Page size (bytes)

 Components of the virtual address (VA)
 TLBI: TLB index

 TLBT: TLB tag

 VPO: Virtual page offset

 VPN: Virtual page number

 Components of the physical address (PA)
 PPO: Physical page offset (same as VPO)

 PPN: Physical page number

 CO: Byte offset within cache line

 CI: Cache index

 CT: Cache tag

Carnegie Mellon

33

Address Translation With a Page Table

Virtual page number (VPN) Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address

Physical address

Valid Physical page number (PPN)

Page table
base register

(PTBR)

Page table Page table address
for process

Valid bit = 0:
page not in memory

(page fault)

0p-1pn-1

0p-1pm-1

Carnegie Mellon

34

Address Translation: Page Hit

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

MMU
Cache/
MemoryPA

Data

CPU
VA

CPU Chip
PTEA

PTE
1

2

3

4

5

Carnegie Mellon

35

Address Translation: Page Fault

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim (and, if dirty, pages it out to disk)

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

MMU Cache/
Memory

CPU
VA

CPU Chip
PTEA

PTE

1

2

3

4

5

Disk

Page fault handler

Victim page

New page

Exception

6

7

Carnegie Mellon

36

Integrating VM and Cache

VA
CPU MMU

PTEA

PTE

PA

Data

Memory
PAPA

miss

PTEAPTEA
miss

PTEA
hit

PA
hit

Data

PTE

L1
cache

CPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

37

Speeding up Translation with a TLB

 Page table entries (PTEs) are cached in L1 like any other
memory word

 PTEs may be evicted by other data references

 PTE hit still requires a small L1 delay

 Solution: Translation Lookaside Buffer (TLB)
 Small hardware cache in MMU

 Maps virtual page numbers to physical page numbers

 Contains complete page table entries for small number of pages

Carnegie Mellon

38

TLB Hit

MMU
Cache/
Memory

PA

Data

CPU
VA

CPU Chip

PTE

1

2

4

5

A TLB hit eliminates a memory access

TLB

VPN 3

Carnegie Mellon

39

TLB Miss

MMU
Cache/
MemoryPA

Data

CPU
VA

CPU Chip

PTE

1

2

5

6

TLB

VPN

4

PTEA

3

A TLB miss incurs an additional memory access (the PTE)
Fortunately, TLB misses are rare. Why?

Carnegie Mellon

40

Multi-Level Page Tables

 Suppose:
 4KB (212) page size, 48-bit address space, 8-byte PTE

 Problem:
 Would need a 512 GB page table!

 248 * 2-12 * 23 = 239 bytes

 Common solution:
 Multi-level page tables

 Example: 2-level page table

 Level 1 table: each PTE points to a page table (always
memory resident)

 Level 2 table: each PTE points to a page
(paged in and out like any other data)

Level 1

Table

...

Level 2

Tables

...

Carnegie Mellon

41

A Two-Level Page Table Hierarchy
Level 1

page table

...

Level 2

page tables

VP 0

...

VP 1023

VP 1024

...

VP 2047

Gap

0

PTE 0

...

PTE 1023

PTE 0

...

PTE 1023

1023 null
PTEs

PTE 1023 1023
unallocated

pages

VP 9215

Virtual

memory

(1K - 9)
null PTEs

PTE 0

PTE 1

PTE 2 (null)

PTE 3 (null)

PTE 4 (null)

PTE 5 (null)

PTE 6 (null)

PTE 7 (null)

PTE 8

2K allocated VM pages
for code and data

6K unallocated VM pages

1023 unallocated pages

1 allocated VM page
for the stack

32 bit addresses, 4KB pages, 4-byte PTEs

Carnegie Mellon

42

Summary

 Programmer’s view of virtual memory
 Each process has its own private linear address space

 Cannot be corrupted by other processes

 System view of virtual memory
 Uses memory efficiently by caching virtual memory pages

 Efficient only because of locality

 Simplifies memory management and programming

 Simplifies protection by providing a convenient interpositioning point
to check permissions

