Synchronization: Basics

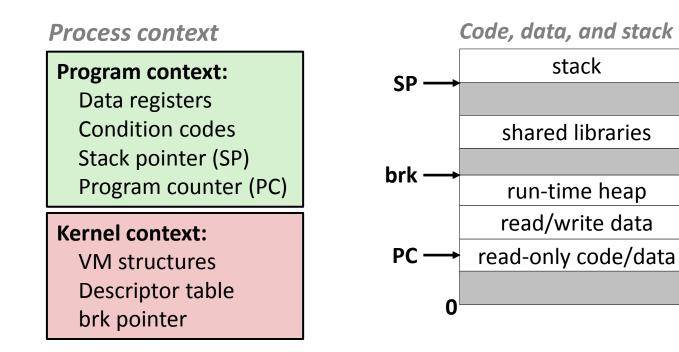
15-213/18-243: Introduction to Computer Systems 25th Lecture, July 28, 2011

Instructors:

Gregory Kesden

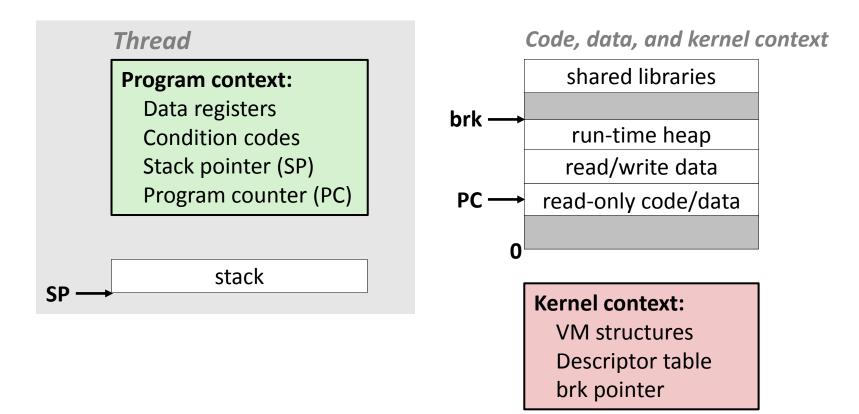
Exam

- Closed book and notes
- Processes and Signals (Chapter 8)
 - Fork / Exec / Sig Handlers
- System I/O (Chapter 10)
 - Files
- Virtual Memory (Chapter 9)
 - Address Translation
 - Multi-Level Page Tables
- Dynamic Memory (Chapter 9)
- Linking (Chapter 7)
 - Symbols
 - ELF Components

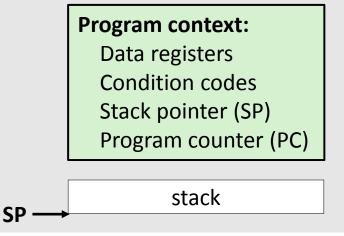

Today

Threads review

- Sharing
- Mutual exclusion
- Semaphores


Process: Traditional View

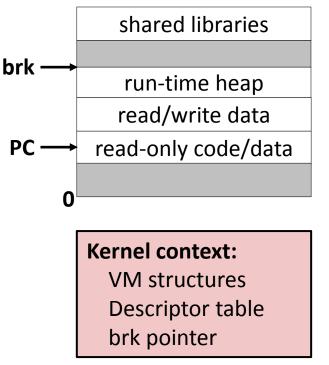
Process = process context + code, data, and stack


Process: Alternative View

Process = thread + code, data, and kernel context

Process with Two Threads

Thread 1



Thread 2

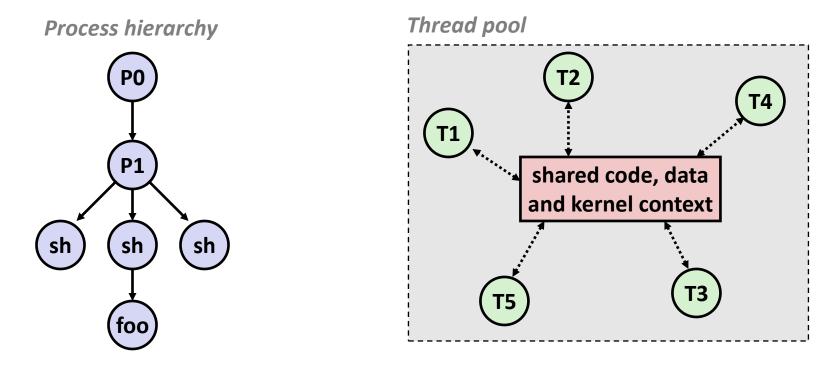
Program context: Data registers Condition codes Stack pointer (SP) Program counter (PC)

stack

Code, data, and kernel context

Threads vs. Processes

Threads and processes: similarities

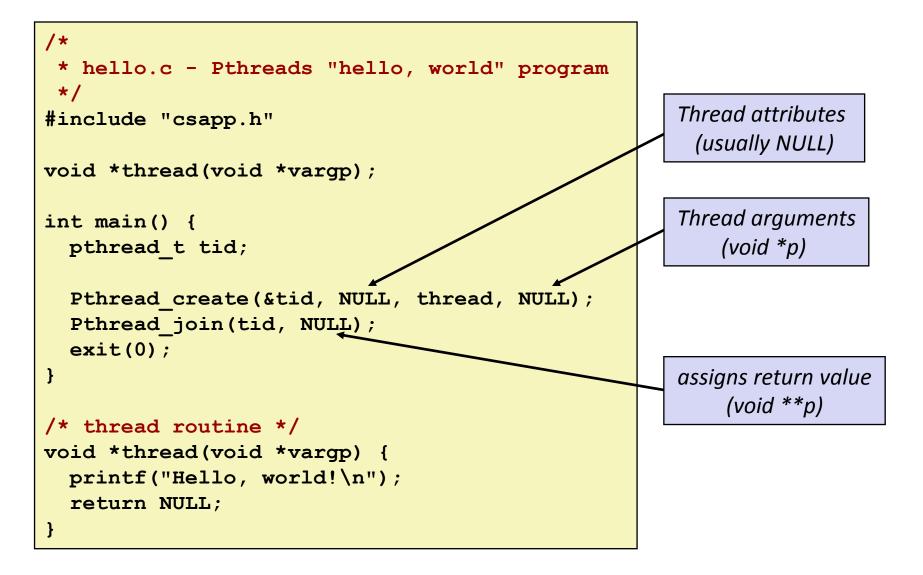

- Each has its own logical control flow
- Each can run concurrently with others
- Each is context switched (scheduled) by the kernel

Threads and processes: differences

- Threads share code and data, processes (typically) do not
- Threads are less expensive than processes
 - Process control (creating and reaping) is more expensive as thread control
 - Context switches for processes more expensive than for threads

Threads vs. Processes (cont.)

- Processes form a tree hierarchy
- Threads form a pool of peers
 - Each thread can kill any other
 - Each thread can wait for any other thread to terminate
 - Main thread: first thread to run in a process



Posix Threads (Pthreads) Interface

Pthreads: Standard interface for ~60 functions that manipulate threads from C programs

- Threads run thread routines:
 - void *threadroutine(void *vargp)
- Creating and reaping threads
 - pthread_create(pthread_t *tid, ..., func *f, void *arg)
 - pthread_join(pthread_t tid, void **thread_return)
- Determining your thread ID
 - pthread_self()
- Terminating threads
 - pthread_cancel(pthread_t tid)
 - pthread_exit(void *tread_return)
 - return (in primary thread routine terminates the thread)
 - exit (terminates all threads)

The Pthreads "Hello, world" Program

Pros and Cons of Thread-Based Designs

- + Easy to share data structures between threads
 - e.g., logging information, file cache
- + Threads are more efficient than processes
- Unintentional sharing can introduce subtle and hard-toreproduce errors!

Today

- Threads review
- Sharing
- Mutual exclusion
- Semaphores

Shared Variables in Threaded C Programs

- Question: Which variables in a threaded C program are shared?
 - The answer is not as simple as "global variables are shared" and "stack variables are private"

Requires answers to the following questions:

- What is the memory model for threads?
- How are instances of variables mapped to memory?
- How many threads might reference each of these instances?
- Def: A variable x is shared if and only if multiple threads reference some instance of x.

Threads Memory Model

Conceptual model:

- Multiple threads run within the context of a single process
- Each thread has its own separate thread context
 - Thread ID, stack, stack pointer, PC, condition codes, and GP registers
- All threads share the remaining process context
 - Code, data, heap, and shared library segments of the process virtual address space
 - Open files and installed handlers

• Operationally, this model is not strictly enforced:

- Register values are truly separate and protected, but...
- Any thread can read and write the stack of any other thread

The mismatch between the conceptual and operation model is a source of confusion and errors

Example Program to Illustrate Sharing

```
char **ptr; /* global */
int main()
ł
    int i;
    pthread t tid;
    char *msgs[2] = \{
        "Hello from foo",
        "Hello from bar"
    };
    ptr = msqs;
    for (i = 0; i < 2; i++)
        Pthread create(&tid,
            NULL,
            thread,
            (void *)i);
    Pthread exit(NULL);
```

```
/* thread routine */
void *thread(void *vargp)
{
    int myid = (int) vargp;
```

```
static int cnt = 0;
```

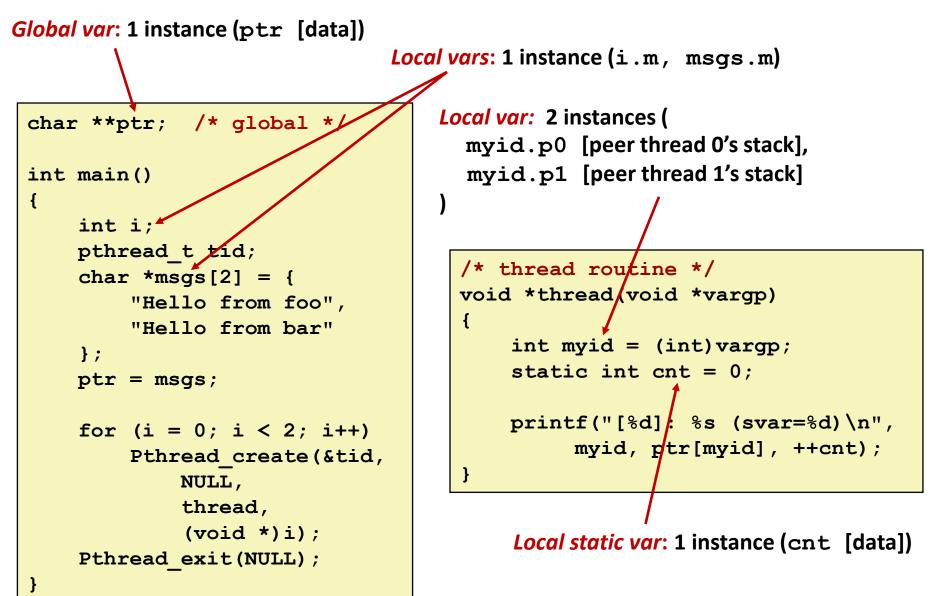
```
printf("[%d]: %s (svar=%d)\n",
    myid, ptr[myid], ++cnt);
```

Peer threads reference main thread's stack indirectly through global ptr variable

Mapping Variable Instances to Memory

Global variables

- *Def:* Variable declared outside of a function
- Virtual memory contains exactly one instance of any global variable


Local variables

- Def: Variable declared inside function without static attribute
- Each thread stack contains one instance of each local variable

Local static variables

- Def: Variable declared inside function with the static attribute
- Virtual memory contains exactly one instance of any local static variable.

Mapping Variable Instances to Memory

Shared Variable Analysis

Which variables are shared?

Variable instance	Referenced by main thread?	Referenced by peer thread 0?	<i>Referenced by peer thread 1?</i>
ptr	yes	yes	yes
cnt	no	yes	yes
i.m	yes	no	no
msgs.m	yes	yes	yes
myid.p0	no	yes	no
myid.p1	no	no	yes

Answer: A variable x is shared iff multiple threads reference at least one instance of x. Thus:

- ptr, cnt, and msgs are shared
- i and myid are not shared

Today

- Threads review
- Sharing
- Mutual exclusion
- Semaphores

badcnt.c: Improper Synchronization

}

Pthread join(tid2, NULL);

```
/* Check result */
if (cnt != (2 * niters))
    printf("BOOM! cnt=%d\n", cnt);
else
```

```
printf("OK cnt=%d\n", cnt);
exit(0);
```

}

```
/* Thread routine */
void *thread(void *vargp)
{
    int i, niters = *((int *)vargp);
    for (i = 0; i < niters; i++)
        cnt++;
    return NULL;</pre>
```

```
linux> ./badcnt 10000
OK cnt=20000
linux> ./badcnt 10000
BOOM! cnt=13051
linux>
```

cnt should equal 20,000.

What went wrong?

Assembly Code for Counter Loop

C code for counter loop in thread i

```
for (i=0; i < niters; i++)
    cnt++;</pre>
```

Corresponding assembly code

	<pre>movl (%rdi),%ecx movl \$0,%edx cmpl %ecx,%edx jge .L13</pre>	Head (H _i)
7.111 :	<pre>movl cnt(%rip),%eax incl %eax movl %eax,cnt(%rip)</pre>	<pre>Load cnt (L_i) Update cnt (U_i) Store cnt (S_i)</pre>
.L13:	-incl-%edx cmpl %ecx,%edx jl .L11	<pre>Tail (T_i)</pre>

Concurrent Execution

Key idea: In general, any sequentially consistent interleaving is possible, but some give an unexpected result!

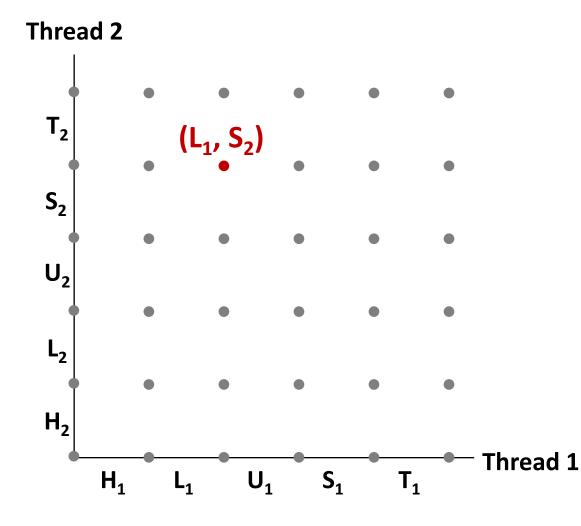
- I_i denotes that thread i executes instruction I
- %eax, is the content of %eax in thread i's context

i (thread)	instr _i	%eax ₁	%eax ₂	cnt		
1	H ₁	-	-	0		Thread 1
1	L	0	-	0		critical section
1		1	-	0		
1	S ₁	1	-	1		Thread 2
2	H ₂	-	-	1		critical section
2	L_2	-	1	1		
2	U ₂	-	2	1		
2	S ₂	-	2	2		
2	T ₂	-	2	2		
1	T ₁	1	-	2	ОК	

Concurrent Execution (cont)

Incorrect ordering: two threads increment the counter, but the result is 1 instead of 2

i (thread)	instr _i	%eax ₁	%eax ₂	cnt	
1	H ₁	-	-	0	
1	L ₁	0	-	0	
1	U ₁	1	-	0	
2	H_2	-	-	0	
2	L ₂	-	0	0	
1	S ₁	1	-	1	
1	T ₁	1	-	1	
2	U_2	-	1	1	
2	S ₂	-	1	1	
2	T ₂	-	1	1	Oops


Concurrent Execution (cont)

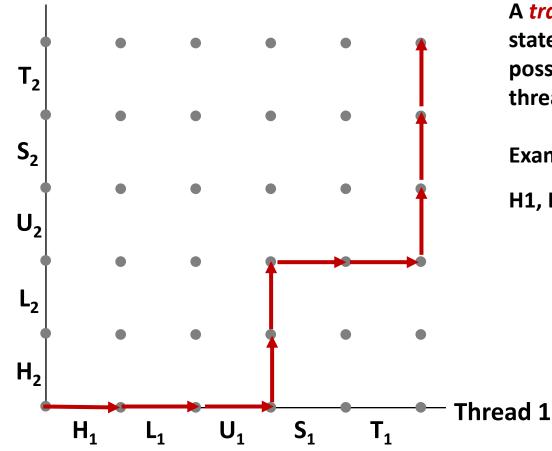
How about this ordering?

i (thread)	instr _i	%eax ₁	%eax ₂	cnt	
1	H ₁			0	
1	L ₁	0			
2	H ₂				
2	L ₂		0		
2	U ₂		1		
2	S ₂		1	1	
1	U ₁	1			
1	S ₁	1		1	
1	T ₁				
2	T ₂			1	Oops

We can analyze the behavior using a progress graph

Progress Graphs

A progress graph depicts the discrete execution state space of concurrent threads.

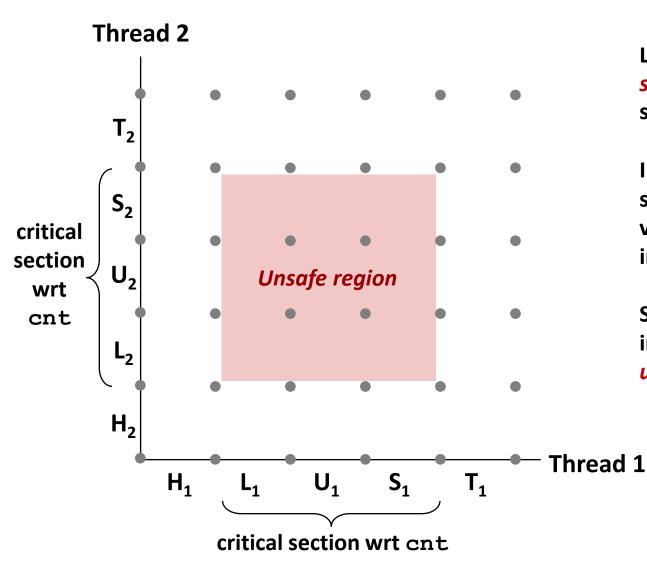

Each axis corresponds to the sequential order of instructions in a thread.

Each point corresponds to a possible *execution state* (Inst₁, Inst₂).

E.g., (L_1, S_2) denotes state where thread 1 has completed L_1 and thread 2 has completed S_2 .

Trajectories in Progress Graphs

Thread 2

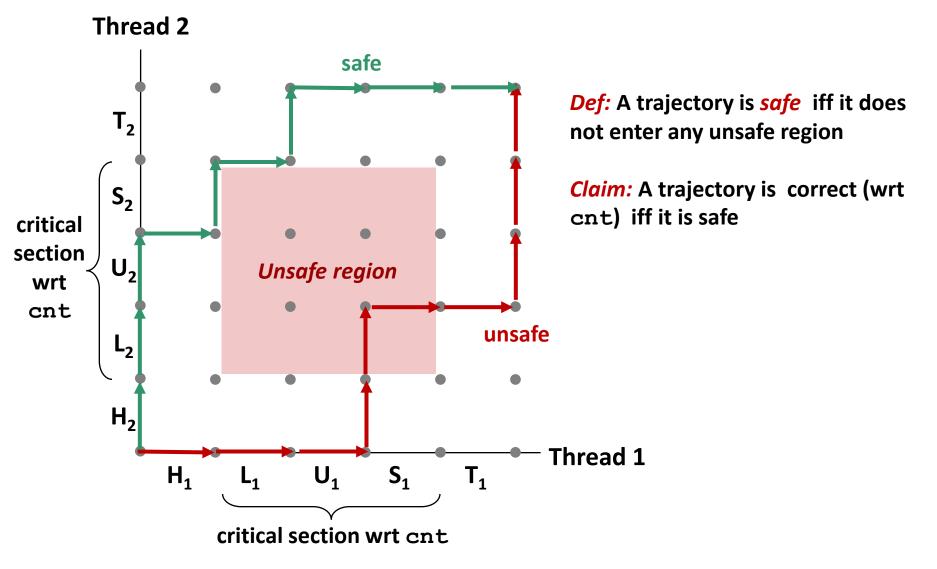


A *trajectory* is a sequence of legal state transitions that describes one possible concurrent execution of the threads.

Example:

H1, L1, U1, H2, L2, S1, T1, U2, S2, T2

Critical Sections and Unsafe Regions



L, U, and S form a *critical section* with respect to the shared variable cnt

Instructions in critical sections (wrt to some shared variable) should not be interleaved

Sets of states where such interleaving occurs form *unsafe regions*

Critical Sections and Unsafe Regions

Enforcing Mutual Exclusion

- Question: How can we guarantee a safe trajectory?
- Answer: We must synchronize the execution of the threads so that they never have an unsafe trajectory.
 - i.e., need to guarantee *mutually exclusive access* to critical regions

Classic solution:

- Semaphores (Edsger Dijkstra)
- Other approaches (out of our scope)
 - Mutex and condition variables (Pthreads)
 - Monitors (Java)

Today

- Threads review
- Sharing
- Mutual exclusion
- Semaphores

Semaphores

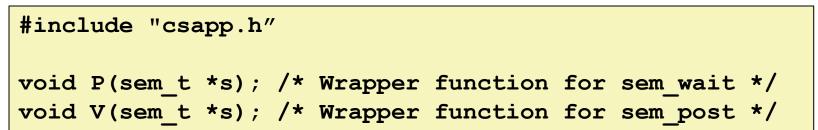
- Semaphore: non-negative global integer synchronization variable
- Manipulated by P and V operations:
 - P(s): [while (s == 0) wait(); s--;]
 - Dutch for "Proberen" (test)
 - V(s): [s++;]
 - Dutch for "Verhogen" (increment)

OS kernel guarantees that operations between brackets [] are executed indivisibly

- Only one *P* or *V* operation at a time can modify s.
- When while loop in P terminates, only that P can decrement s

Semaphore invariant: (s >= 0)

C Semaphore Operations


Pthreads functions:

#include <semaphore.h>

int sem_init(sem_t *sem, 0, unsigned int val);} /* s = val */

int sem_wait(sem_t *s); /* P(s) */
int sem_post(sem_t *s); /* V(s) */

CS:APP wrapper functions:

badcnt.c: Improper Synchronization

}

```
/* Check result */
if (cnt != (2 * niters))
    printf("BOOM! cnt=%d\n", cnt);
else
```

```
printf("OK cnt=%d\n", cnt);
exit(0);
```

}

```
/* Thread routine */
void *thread(void *vargp)
{
    int i, niters = *((int *)vargp);
    for (i = 0; i < niters; i++)
        cnt++;
    return NULL;</pre>
```

How can we fix this using semaphores?

Using Semaphores for Mutual Exclusion

Basic idea:

- Associate a unique semaphore *mutex*, initially 1, with each shared variable (or related set of shared variables).
- Surround corresponding critical sections with *P(mutex)* and *V(mutex)* operations.

Terminology:

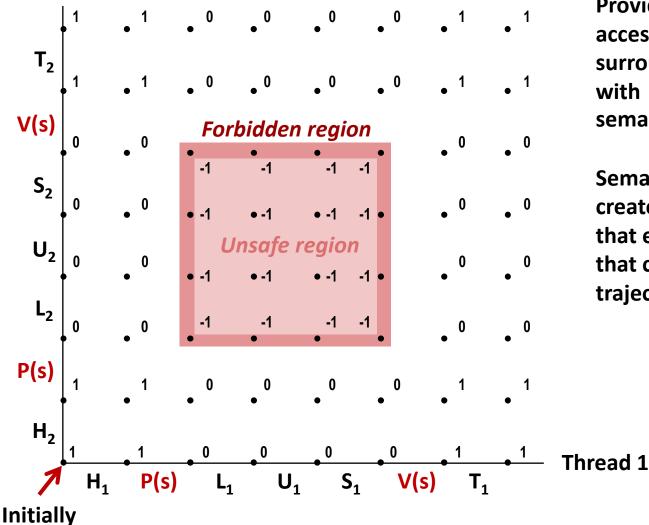
- Binary semaphore: semaphore whose value is always 0 or 1
- Mutex: binary semaphore used for mutual exclusion
 - P operation: "locking" the mutex
 - V operation: "unlocking" or "releasing" the mutex
 - "Holding" a mutex: locked and not yet unlocked.
- Counting semaphore: used as a counter for set of available resources.

goodcnt.c: Proper Synchronization

Define and initialize a mutex for the shared variable cnt:

/* Counter */
<pre>/* Semaphore that protects cnt */</pre>
/* mutex = 1 */

Surround critical section with P and V:


```
for (i = 0; i < niters; i++) {
    P(&mutex);
    cnt++;
    V(&mutex);
}</pre>
```

```
linux> ./goodcnt 10000
OK cnt=20000
linux> ./goodcnt 10000
OK cnt=20000
linux>
```

Warning: It's much slower than badcnt.c.

Why Mutexes Work

Thread 2

Provide mutually exclusive access to shared variable by surrounding critical section with *P* and *V* operations on semaphore s (initially set to 1)

Semaphore invariant creates a *forbidden region* that encloses unsafe region that cannot be entered by any trajectory.

Summary

- Programmers need a clear model of how variables are shared by threads.
- Variables shared by multiple threads must be protected to ensure mutually exclusive access.
- Semaphores are a fundamental mechanism for enforcing mutual exclusion.