RECITATION 4 —
THE STACK

15-213-m12
Rick Benua

The Stack

Region of memory dedicated to local variables and
arguments for all functions currently being executed

Maintained using registers %esp and %ebp (on IA32)

%esp points to the top of the stack (actually the lowest address)
%ebp points to the base of the current “frame” — section of data

associated with current function
Modern compilers don’t need %ebp for this
Omitted by default on x86-64
%rbp can be another GPR
Can pass compiler flags to omit it on IA32

D
The Stack

- Memory on the stack can be accessed without checks
- Callee reaches into caller’s frame to find arguments
- Caller may pass a pointer into its stack frame to callee
- (read as input, or write result, or both!)
- Callee may NOT return pointers into its stack
- Stack space is “freed” upon return
- Reused for next function call

>

foo

>

Anatomy of a Stack Frame — |1A32
« Just before calling a function

old %ebp 4 %ebp arguments to next call pushed on stack

in reverse order
callee-saved registers

locals
locals
locals
argument 2

argument 1 G %esp

Anatomy of a Stack Frame — x86-64
* No base pointer — compiler uses offset

I d reqist from %rsp to find return value
caliee-saved registers * Arguments passed in registers, but can
locals spill over onto the stack

locals
locals
argument 8

argument 7 G %rsp

D
Buffer Lab

- Out now!
- Due Tuesday

- More examination of programs
- Create buffer overflow exploits for a known program

- READ THE HANDOUT
- FOR THE LOVE OF GOD, READ THE ENTIRE HANDOUT

- Series of incrementally more complex exploits

Buffer Overflow

- Common idiom in code: Copy input from user into buffer,
then process it

- Copy may not check length of input
- Part of the point of this lab is to teach you to not do that

- Can reach beyond buffer into other parts of stack
- Strings generally written in from low — high addresses

- “up” the stack, including into saved %ebp or return
address!

- This is very bad.

Structures

Structures combine sets of related values that can be
passed around together

Values not necessarily contiguous in memory

Each value must be aligned to its size

Entire struct must be aligned to the largest constraint of any
member

Each member is at a constant offset from the beginning of
the struct

c i[0] i[1] v
sp+0 sp+4 sp+8 sp+16 sp+24

Unions

- Structures store values “next to” each other
- Unions store values “on top of” each other

- Casting between types does conversion

- Union access does not

i[0] i[1]

up+0 up+4 up+8

0x00001f30 <main+0>: push
0x00001f31 <main+1>: mov
0x00001f33 <main+3>: sub
0x00001f36 <main+6>: movl
0x00001f3d <main+13>: movl
0x00001f44 <main+20>: jmp
0x00001f46 <main+22>: mov
0x00001f49 <main+25>: add
0x00001f4c <main+28>: mov
0x00001f4e <main+30>: shr
0x00001f51 <main+33>: lea
0x00001f54 <main+36>: sar
0x00001f56 <main+38>: mov
0x00001f59 <main+41>: mov
0x00001f5¢ <main+44>: lea
0x00001f5f <main+47>: mov
0x00001f62 <main+50>: mov
0x00001f65 <main+53>: cmp

0x00001f68 <main+56>: jle 0x1f46 <main+22>

0x00001f6a <main+58>: mov
0x00001f6d <main+61>: cmp
0x00001f70 <main+64>: je
0x00001f72 <main+66>: movl
0x00001f79 <main+73>: jmp
0x00001f7b <main+75>: movl
0x00001f82 <main+82>: mov
0x00001f85 <main+85>: mov
0x00001f88 <main+88>: mov
0x00001f8b <main+91>: add
0x00001f8e <main+94>: pop
0x00001f8f <main+95>: ret

%ebp
%esp,%ebp
$0x10,%esp
$0x39,-0xc(%ebp)
$0x0,-0x10(%ebp)
0x1f62 <main+50>
-0xc(%ebp),%eax
$0x1,%eax
%eax,%ecx \
$0x1f,%ecx
(%eax,%ecx,1),%eax
%eax
%eax,-0xc(%ebp)
-0x10(%ebp),%eax
0x1(%eax),%eax
%eax,-0x10(%ebp)
-0x10(%ebp),%eax
$0x7,%eax

-0x10(%ebp),%eax
$0x1,%eax

0x1f7b <main+75>

$0x1,-0x8(%ebp) N
0x1f82 <main+82>™
$0x0,-0x8(%ebp) &
-0x8(%ebp),%eax ¥
%eax,-0x4(%ebp)
-0x4(%ebp),%eax
$0x10,%esp

%ebp

int main(){

int x =57;
inty = 0;
for(; y < 8; y++){
x=(x+1)/2;
}
if(y 1= 1){
return 1;
}
else{
return O;

}

struct{
int i;
char c[3];
struct s *n;
double d;
short s;

}s;

0x00

c[0]

c[1]

cl2]

0x08

0x10

w (A |3

0x18

w (A |3

