
RECITATION 4 –
THE STACK
15-213-m12
Rick Benua

The Stack
• Region of memory dedicated to local variables and

arguments for all functions currently being executed
• Maintained using registers %esp and %ebp (on IA32)

•  %esp points to the top of the stack (actually the lowest address)
•  %ebp points to the base of the current “frame” – section of data

associated with current function

• Modern compilers don’t need %ebp for this
•  Omitted by default on x86-64
•  %rbp can be another GPR
•  Can pass compiler flags to omit it on IA32

The Stack
• Memory on the stack can be accessed without checks

•  Callee reaches into caller’s frame to find arguments
•  Caller may pass a pointer into its stack frame to callee

•  (read as input, or write result, or both!)

• Callee may NOT return pointers into its stack
•  Stack space is “freed” upon return
•  Reused for next function call

foo

bar baz

foo foo

Anatomy of a Stack Frame – IA32
return address

old %ebp

callee-saved registers

locals

locals

locals

argument 2

argument 1

%ebp

%esp

•  Just before calling a function
•  arguments to next call pushed on stack

in reverse order

Anatomy of a Stack Frame – x86-64
return address

callee-saved registers

locals

locals

locals

argument 8

argument 7 %rsp

•  No base pointer – compiler uses offset
from %rsp to find return value

•  Arguments passed in registers, but can
spill over onto the stack

Buffer Lab
• Out now!
• Due Tuesday
• More examination of programs

•  Create buffer overflow exploits for a known program

• READ THE HANDOUT
•  FOR THE LOVE OF GOD, READ THE ENTIRE HANDOUT

• Series of incrementally more complex exploits

Buffer Overflow
• Common idiom in code: Copy input from user into buffer,

then process it
• Copy may not check length of input

•  Part of the point of this lab is to teach you to not do that
• Can reach beyond buffer into other parts of stack
• Strings generally written in from low – high addresses
•  “up” the stack, including into saved %ebp or return

address!
•  This is very bad.

Structures
• Structures combine sets of related values that can be

passed around together
• Values not necessarily contiguous in memory

•  Each value must be aligned to its size
•  Entire struct must be aligned to the largest constraint of any

member

• Each member is at a constant offset from the beginning of
the struct

c 3	
 bytes	
 i[0] i[1] 4	
 bytes	
 v

sp+0 sp+4 sp+8 sp+16 sp+24

Unions
• Structures store values “next to” each other
• Unions store values “on top of” each other
• Casting between types does conversion
• Union access does not

c

i[0] i[1]

v

up+0 up+4 up+8

0x00001f30 <main+0>: push %ebp
0x00001f31 <main+1>: mov %esp,%ebp
0x00001f33 <main+3>: sub $0x10,%esp
0x00001f36 <main+6>: movl $0x39,-0xc(%ebp)
0x00001f3d <main+13>: movl $0x0,-0x10(%ebp)
0x00001f44 <main+20>: jmp 0x1f62 <main+50>
0x00001f46 <main+22>: mov -0xc(%ebp),%eax
0x00001f49 <main+25>: add $0x1,%eax
0x00001f4c <main+28>: mov %eax,%ecx
0x00001f4e <main+30>: shr $0x1f,%ecx
0x00001f51 <main+33>: lea (%eax,%ecx,1),%eax
0x00001f54 <main+36>: sar %eax
0x00001f56 <main+38>: mov %eax,-0xc(%ebp)
0x00001f59 <main+41>: mov -0x10(%ebp),%eax
0x00001f5c <main+44>: lea 0x1(%eax),%eax
0x00001f5f <main+47>: mov %eax,-0x10(%ebp)
0x00001f62 <main+50>: mov -0x10(%ebp),%eax
0x00001f65 <main+53>: cmp $0x7,%eax
0x00001f68 <main+56>: jle 0x1f46 <main+22>
0x00001f6a <main+58>: mov -0x10(%ebp),%eax
0x00001f6d <main+61>: cmp $0x1,%eax
0x00001f70 <main+64>: je 0x1f7b <main+75>
0x00001f72 <main+66>: movl $0x1,-0x8(%ebp)
0x00001f79 <main+73>: jmp 0x1f82 <main+82>
0x00001f7b <main+75>: movl $0x0,-0x8(%ebp)
0x00001f82 <main+82>: mov -0x8(%ebp),%eax
0x00001f85 <main+85>: mov %eax,-0x4(%ebp)
0x00001f88 <main+88>: mov -0x4(%ebp),%eax
0x00001f8b <main+91>: add $0x10,%esp
0x00001f8e <main+94>: pop %ebp
0x00001f8f <main+95>: ret

int main(){
 int x = 57;
 int y = 0;
 for(; y < 8; y++){
 x = (x + 1) / 2;
 }
 if(y != 1){
 return 1;
 }
 else{
 return 0;
 }
}

struct{
 int i;
 char c[3];
 struct s *n;
 double d;
 short s;
} s;

0x00 i i i i c[0] c[1] c[2] --
0x08 n n n n -- -- -- --
0x10 d d d d d d d d
0x18 s s -- -- -- -- -- --

