Carnegie Mellon

Bits, Bytes, and Integers

15-213: Introduction to Computer Systems
3"d Lectures, May 28th, 2013

Instructors:
Greg Kesden

Carnegie Mellon

Today: Bits, Bytes, and Integers

m Integers

|
|
= Expanding, truncating
|

Carnegie Mellon

Sign Extension

m Task:

= Given w-bit signed integer x

= Convert it to w+k-bit integer with same value
m Rule:

= Make k copies of sign bit:

m X = Xy Xyt s Xyt s Xy 100 X

k copies of MSB < w >
o 00
X’ () ()

<€ k > € 7, >

Sign Extension Example

short int x = 15213;

int ix = (int) x;

short int y = -15213;

int iy = (int) y;

Decimal Hex Binary

b4 15213 3B 6D 00111011 01101101
ix 15213 | 00 00 3B 6D 00000000 00000000 00111011 01101101
Yy -15213 C4 93 11000100 10010011
iy -15213| FF FF C4 93 11111111 11111111 11000100 10010011

m Converting from smaller to larger integer data type
m Cautomatically performs sign extension

Carnegie Mellon

Summary:
Expanding, Truncating: Basic Rules

m Expanding (e.g., short int to int)
= Unsigned: zeros added
= Signed: sign extension
= Both yield expected result

m Truncating (e.g., unsigned to unsigned short)
= Unsigned/signed: bits are truncated
= Result reinterpreted
= Unsigned: mod operation
= Signed: similar to mod

= For small numbers yields expected behavior

Carnegie Mellon

Lets run some tests
printf (“%d\n”, getValue())

50652
1500
9692

26076

17884

42460

34268

50652

Carnegie Mellon

Lets run some tests

int x=getValue(); printf(“%d %08x\n”,x, x);

50652 0000c5dc
1500 000005dc
9692 000025dc

26076 000065dc

17884 000045dc

42460 0000a5dc

34268 000085dc

50652 0000c5dc

Those darn
engineers!

Carnegie Mellon

Only care about least significant 12 bits

int x=getValue() ;
x=(x & 0x0fff) ;
printf (“%$d\n”,x) ;

Carnegie Mellon

Only care about least significant 12 bits

int x=getValue() ;
x=x (&0x0£f£ff) ;
printf (“%$d\n”,x) ;

Carnegie Mellon

Must sigh extend

int x=getValue() ;
x= (x&0x00f£ff) | (x&0x0800?0x££f£££000:0) ;
printf (“%$d\n”,x) ;

There is a better way.

10

Carnegie Mellon

Because you graduated from 213

int x=getValue() ;
x= (x&0x00f£ff) | (x&0x0800?0x££f£££000:0) ;
printf (“%$d\n”,x) ;

AY3Live &0 AY3LIvE d@

1

Carnegie Mellon

Lets be really thorough

int x=getValue() ;
x=(x&0x00£f£ff) | (x&0x0800?0x£££££000:0) ;
printf (“%$d\n”,x) ;

12

Carnegie Mellon

Today: Bits, Bytes, and Integers

n
n
m Integers
o
o
o
= Addition, negation, multiplication, shifting
u

13

Carnegie Mellon

Unsigned Addition

Operands: w bits u °eoe
—|_ V o 00

True Sum: w+1 bits . —

Discard Carry: wbits ~ UAdd (u , v) o

m Standard Addition Function

" |gnores carry output

m Implements Modular Arithmetic
s = UAdd,(u, V) = u+v mod?2¥

14

Carnegie Mellon

Visualizing (Mathematical) Integer Addition

m Integer Addition Add,(u, v)

= 4-bit integers uv Integer Addition

" Compute true sum
Add,(u, v)

= Values increase linearly
with uand v

" Forms planar surface

15

Visualizing Unsigned Addition
m Wraps Around Overflow

" |ftrue sum > 2% \

= At most once

True Sum

w+lT
2 Overflow

-

0

Modular Sum

16

Carnegie Mellon

Two’s Complement Addition

Operands: w bits u 200
+ v o 00

True Sum: w+1 bits
u + V o000
Discard Carry: w bits TAdd, (u, v) X

m TAdd and UAdd have Identical Bit-Level Behavior

= Signed vs. unsigned addition in C:
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t=u+v

= Will give s ==

17

TAdd Overflow

m Functionality

True sum requires w+1
bits
Drop off MSB

Treat remaining bits as
2’s comp. integer

0111..

0 100...

0 000...

1011...

1 000...

True Sum
2v-1 T
PosOver
2W—1_1 -
0 +
_2W—1 -
1 NegOver

Carnegie Mellon

TAdd Result

011..1

000...0

100...0

18

Carnegie Mellon

Visualizing 2’s Complement Addition

NegOver
m Values \

= 4-bit two’s comp.

TAdd,

(u,v)
= Range from -8 to +7
m Wraps Around
= |f sum > 2wt
= Becomes negative
= At most once
" |fsum < —2w-1
= Becomes positive
= At most once

u 46 _ PosOver

19

Carnegie Mellon

Multiplication

m Goal: Computing Product of w-bit numbers x, y
= Either signed or unsigned

m But, exact results can be bigger than w bits
= Unsigned: up to 2w bits
= Resultrange:0<x*y<(2w—-1)2%2 = 22w—-2w+l ¢+ 1
= Two’s complement min (negative): Up to 2w-1 bits
= Resultrange: x *y > (-2w1)*(2w1-1) = —22w=24 w1
= Two’s complement max (positive): Up to 2w bits, but only for (TMin,)?
= Resultrange: x * y < (-2w1)2 = 22w=2
m So, maintaining exact results...
= would need to keep expanding word size with each product computed
® jsdone in software, if needed
= e.g., by “arbitrary precision” arithmetic packages

20

Carnegie Mellon

Unsigned Multiplication in C

u o 00
Operands: w bits
% o000
\ %
True Product: 2*w bits 4 - Vv ° 00 oo
UMult (u , v) <o

Discard w bits: w bits

m Standard Multiplication Function

= |gnores high order w bits

m Implements Modular Arithmetic
UMult (u,v)= u -v mod?2¥

21

Signed Multiplication in C

u o 00
Operands: w bits
* o000
\%
True Product: 2*w bits U " V XX voo
TMult (u, v) oo

Discard w bits: w bits

m Standard Multiplication Function

= |gnores high order w bits

= Some of which are different for signed
vs. unsigned multiplication

= Lower bits are the same

22

Carnegie Mellon

Power-of-2 Multiply with Shift

m Operation
" u << kgivesu * 2k

= Both signed and unsigned
u

*2k

Operands: w bits

True Product: w+k bits u - 2%

UMult, (u , 2%)
TMult, (u , 2¥)

Discard k bits: w bits

m Examples
" u << 3 == u * 8

" u<< 5 -u<k<3 == u * 24

| @] N |] By | e

Bl [E |E

"= Most machines shift and add faster than multiply

= Compiler generates this code automatically

23

Carnegie Mellon

Unsigned Power-of-2 Divide with Shift

m Quotient of Unsigned by Power of 2
= g > kagives Lu / 2¢]
= Uses logical shift

k
0 q u L see Binary Point
perandas:
l 2k Q YY) Q 1 Q Y m
Division: U / 2k Q Y m YY) { Y
Result: | u/2k] [0L - 100
Division Computed Hex Binary
X 15213 15213 3B 6D| 00111011 01101101
x> 1 7606.5 7606 1D B6| 00011101 10110110
x >> 4 950.8125 950 03 B6| 00000011 10110110
X >> 8 59.4257813 59 00 3B| 00000000 00111011

24

Carnegie Mellon

Signed Power-of-2 Divide with Shift

m Quotient of Signed by Power of 2
= x > kgives Lx / 2¢]
= Uses arithmetic shift
® Rounds wrong direction when x< 0

k
X see see Binary Point
Operands:
l 2k Q YY) Q 1 Q YY) M /
Division: x / 2k L Ll I/ see
Result: RoundDown(x / 2¥) eoe eoe
Division Computed Hex Binary
y -15213 -15213 C4 93| 11000100 10010011
y > 1 -7606.5 -7607 E2 49| 11100010 01001001
y >> 4 -950.8125 -951 FC 49| 11111100 01001001
y >> 8 |-59.4257813 -60 FF C4| 11111111 11000100

25

Carnegie Mellon

Correct Power-of-2 Divide

m Quotient of Negative Number by Power of 2
= Want| x / 2¢] (Round Toward 0)
= Compute as | (x+2k-1)/ 2K
= InC: (x + (1<<k)-1) >> k
= Biases dividend toward O

Case 1: No rounding k
Dividend: u L 1 10 010
+2k1 10 010]1 111
7 oos 1T eee |11 Binary Point
Divisor: | 2k 101 e [0[110] e« [0]0] /
[y /2k | [T _’11 e 1111

Biasing has no effect

26

Carnegie Mellon

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Dividend: x U
+2k—1 [Qf eee [QIQI1] oo 11]1
]

\ J
Y
Incremented by 1 Binary Point
Divisor: | 2k 101 e [0[110] e« [0]0] /
[x/2¢] A AT 111
\ J

Y

Incremented by 1

Biasing adds 1 to final result

27

Carnegie Mellon

Today: Bits, Bytes, and Integers

m Integers

= Summary

28

Carnegie Mellon

Arithmetic: Basic Rules

m Addition:

= Unsigned/signed: Normal addition followed by truncate,
same operation on bit level

= Unsigned: addition mod 2%
= Mathematical addition + possible subtraction of 2%
= Signed: modified addition mod 2% (result in proper range)
= Mathematical addition + possible addition or subtraction of 2%

m Multiplication:

= Unsigned/signed: Normal multiplication followed by truncate,
same operation on bit level

= Unsigned: multiplication mod 2%
= Signed: modified multiplication mod 2% (result in proper range)

29

Carnegie Mellon

Why Should | Use Unsigned?

m Don’t Use Just Because Number Nonnegative
= Easy to make mistakes

unsigned 1i;
for (1 = cnt-2; 1 >= 0; i--)
af[i] += a[i+1l];
= Can be very subtle
#define DELTA sizeof (int)
int i;
for (i = CNT; i-DELTA >= (0; i-= DELTA)

m Do Use When Performing Modular Arithmetic

= Multiprecision arithmetic

m Do Use When Using Bits to Represent Sets
" Logical right shift, no sign extension

30

Integer C Puzzles

= Assume 32-bit word size, two’s complement integers
= For each of the following C expressions: true or false? Why?

* x<0 = ((x*2)<0)
« ux>=0
« X&7== = (x<<30)<0
* ux>-1
° X2y = X<-y
Initialization * x7x>=0
; « x>0&&y>0 = x+y>0
int x = foo(); . x>=0 — x<=0
inty = bar(); ¢ x<=0 = -x>=0
unsigned ux = x; o (x]-x)>>31==-1
unsigned uy = y; * ux>>3==uxi8

« X>>3==x/8
c x&(x-1)!=0

31

Carnegie Mellon

Today: Bits, Bytes, and Integers

m Integers

m Representations in memory, pointers, strings

32

Carnegie Mellon

Byte-Oriented Memory Organization

m Programs refer to data by address
= Conceptually, envision it as a very large array of bytes
= In reality, it’s not, but can think of it that way
" An address is like an index into that array
= and, a pointer variable stores an address

m Note: system provides private address spaces to each “process”
" Think of a process as a program being executed
= So, a program can clobber its own data, but not that of others

33

Carnegie Mellon

Machine Words

m Any given computer has a “Word Size”
" Nominal size of integer-valued data
= and of addresses

" Most current machines use 32 bits (4 bytes) as word size
= Limits addresses to 4GB (232 bytes)
= Becoming too small for memory-intensive applications
— leading to emergence of computers with 64-bit word size

= Machines still support multiple data formats

= Fractions or multiples of word size
= Always integral number of bytes

34

Carnegie Mellon

Word-Oriented Memory Organization

32-bit 64-bit Bytes Addr

m Addresses Specify Byte Words Words '

Locations 0000

. . Addr

= Address of first byte in word - 0001

: : 0000 0002

= Addresses of successive words differ Addr 003
by 4 (32-bit) or 8 (64-bit) =

0000 0004

Addr 0005

0004 0006

0007

0008

Addr 0009

0008 Addr 0010

= 0011

0008 0012

Addr 0013

0012 0014

0015

35

Carnegie Mellon

For other data representations too ...

C Data Type Typical 32-bit m x86-64
1 1 1

char

short 2 2 2
int 4 4 4
long 4 4 8
long long 8 8 8
float 4 4 4
double 8 8 8
long double 8 10/12 10/16
pointer 4 4 8

36

Carnegie Mellon

Byte Ordering

m So, how are the bytes within a multi-byte word ordered in
memory?

m Conventions
= Big Endian: Sun, PPC Mac, Internet
= Least significant byte has highest address
= Little Endian: x86
= Least significant byte has lowest address

37

Carnegie Mellon

Byte Ordering Example

m Example
= Variable x has 4-byte value of 0x01234567
= Address given by &x is 0x100

Big Endian 0x100 0x101 0x102 0x103
01 23 45 67

Little Endian 0x100 0x101 0x102 0x103
67 45 23 01

38

Carnegie Mellon

Decimal: 15213

Representing Integers |sinary: o011 1011 0110 1101

Hex: 3 B 6 D

int A =15213; long int C = 15213:
|IA32, Xx86-64 Sun

|A32 X86-64 Sun

6D
3B
00
00

Int B =-15213;
IA32, x86-64 Sun

T~

Two’s complement representation

39

Carnegie Mellon

Examining Data Representations

m Code to Print Byte Representation of Data
= Casting pointer to unsigned char * allows treatment as a byte array

typedef unsigned char *pointer;

void show bytes (pointer start, int len) {
int i;
for (1 = 0; i < len; i++)
printf (“$p\t0x%.2x\n",start+i, start[i]);
printf ("\n") ;

}

Printf directives:
%p: Print pointer
%0X: Print Hexadecimal

40

Carnegie Mellon

show bytes Execution Example

int a = 15213;
printf ("int a = 15213;\n");
show bytes ((pointer) &a, sizeof (int));

Result (Linux):

int a = 15213;

Ox11ffffcb8 0xo6d
Ox11ffffcb9 0x3b
Ox1llffffcba 0x00
Ox11ffffcbb 0x00

4

Carnegie Mellon

Reading Byte-Reversed Listings

m Disassembly
= Text representation of binary machine code
" Generated by program that reads the machine code

m Example Fragment

Address Instruction Code Assembly Rendition

8048365: 5b pop %ebx

8048366: 81 c3 ab 12 00 00 add $0x12ab, $ebx

804836¢: 83 bb 28 OOVQO 00 00 cmpl §6x0,0x28 (%ebx)
m Deciphering Numbers /

= Value: Ox12ab

= Pad to 32 bits: 0x000012ab

= Splitinto bytes: 000012 ab

® Reverse: ab 12 00 00

42

Carnegie Mellon

Representing Pointers

int B = -15213;
int *P = &B;
Sun IA32 x86-64
EF D4 0C
FF F8 89
FB FF EC
2C BF FF
FF
7F
00
00

Different compilers & machines assign different locations to objects

43

Carnegie Mellon

Representing Strings

char S[6] = "18243";
m StringsinC
= Represented by array of characters
= Each character encoded in ASCII format Linux/Alpha Sun
= Standard 7-bit encoding of character set 31 | | 31
= Character “0” has code 0x30 38 | | 33
— Digit i has code 0x30+j 32 |e SEEY
= String should be null-terminated 34 | SEEY
= Final character =0 33 | . 33
m Compatibility 00 k 00

= Byte ordering not an issue

44

Carnegie Mellon

Code Security Example

m SUN XDR library

= Widely used library for transferring data between machines

void* copy elements (void *ele src[], int ele _cnt, size t ele_size);

ele src

- L ' =

\

dhahdial

malloc(ele_cnt * ele_size)

45

Carnegie Mellon

XDR Code

void* copy elements (void *ele src[], int ele cnt, size t ele _size) ({
/*
* Allocate buffer for ele cnt objects, each of ele size bytes
* and copy from locations designated by ele_ src

*/
void *result = malloc(ele cnt * ele size);
if (result == NULL)

/* malloc failed */
return NULL;

void *next = result;

int i;

for (i = 0; i < ele _cnt; i++) {
/* Copy object i to destination */
memcpy (next, ele src[i], ele_size);
/* Move pointer to next memory region */
next += ele size;

}

return result;

46

XDR Vulnerability

malloc(ele_cnt * ele_size)

m What if:
" ele cnt =220 4+1
" ele size = 4096 =212

=" Allocation="??

m How can | make this function secure?

47

