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Today   

 VM Motivation and Address spaces 

 VM as a tool for caching 

 VM as a tool for memory management 

 VM as a tool for memory protection 

 Address translation 
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 Programs refer to virtual memory addresses 
 movl (%ecx),%eax 

 Conceptually very large array of bytes 

 Each byte has its own address 

 Actually implemented with hierarchy of different 
memory types 

 System provides address space private to particular 
“process” 

 Allocation: Compiler and run-time system 
 Where different program objects should be stored 

 All allocation within single virtual address space 

 But why virtual memory?  

 Why not physical memory? 

Virtual Memory Abstraction 

00∙∙∙∙∙∙0 

FF∙∙∙∙∙∙F 



Carnegie Mellon 

4 

Problem 1: How Does Everything Fit? 

64-bit addresses: 
16 Exabyte 

Physical main memory: 
Few Gigabytes 

? 

And there are many processes …. 
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Problem 2: Memory Management 

Physical main memory 

What goes 
where? 

stack 

heap 
.text 

.data 

… 

Process 1 

Process 2 

Process 3 

… 

Process n 

x 
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Problem 3: How To Protect 

Physical main memory 

Process i 

Process j 

Problem 4: How To Share? 
Physical main memory 

Process i 

Process j 
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Solution: Level Of Indirection 

 Each process gets its own private memory space 

 Solves the previous problems 

Physical memory 

Virtual memory 

Virtual memory 

Process 1 

Process n 

mapping 
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One simple trick solves all of these problems 

 Each process gets its own private image of memory 
 appears to be a full-sized private memory range 

 This fixes “how to choose” and “others shouldn’t mess 
w/yours” 
 in addition to “making everything fit” 

 Implementation: translate addresses transparently 
 add a mapping function 

 to map private (i.e. “virtual”) addresses to physical addresses 

 do the mapping on every load or store 

 This mapping trick is the heart of virtual memory  
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Address Spaces 

 Linear address space: Ordered set of contiguous non-negative integer 
addresses: 
  {0, 1, 2, 3 … } 

 

 Virtual address space: Set of N = 2n virtual addresses 
  {0, 1, 2, 3, …, N-1} 

 

 Physical address space: Set of M = 2m physical addresses 
  {0, 1, 2, 3, …, M-1} 

 

 Clean distinction between data (bytes) and their attributes (addresses) 

 Each datum can now have multiple addresses 

 Every byte in main memory:  
one physical address, one (or more) virtual addresses 
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A System Using Physical Addressing 

 Used in “simple” systems like embedded microcontrollers in 
devices like cars, elevators, and digital picture frames 

0: 
1: 

M-1: 

Main memory 

CPU 

2: 
3: 
4: 
5: 
6: 
7: 

Physical address 
(PA) 

Data word 

8: ...
 

4 
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A System Using Virtual Addressing 

 Used in all modern servers, desktops, and laptops 

 One of the great ideas in computer science 

0: 
1: 

M-1: 

Main memory 

MMU 

2: 
3: 
4: 
5: 
6: 
7: 

Physical address 
(PA) 

Data word 

8: ...
 

CPU 

Virtual address 
(VA) 

CPU Chip 

4 4100 
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Why Virtual Memory (summary)? 

 Uses main memory (RAM) efficiently 
 Use DRAM as a cache for the parts of a virtual address space 

 
 Simplifies memory management 

 Each process gets the same uniform linear address space 

 

 Isolates address spaces 
 One process can’t interfere with another’s memory  

 User program cannot access privileged kernel information 
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Today   

 VM Motivation and Address spaces 

 (1) VM as a tool for caching 

 (2) VM as a tool for memory management 

 (3) VM as a tool for memory protection 

 Address translation 
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(1) VM as a Tool for Caching 

 Virtual memory is an array of N contiguous bytes stored 
on disk.  

 The contents of the array on disk are cached in physical 
memory (DRAM cache) 
 These cache blocks are called pages (size is P = 2p bytes) 

PP 2m-p-1 

Physical memory 

Empty 

Empty 

Uncached 

VP 0 

VP 1 

VP 2n-p-1 

Virtual memory 

Unallocated 

Cached 

Uncached 

Unallocated 

Cached 

Uncached 

PP 0 

PP 1 

Empty 

Cached 

0 

N-1 

M-1 

0 

Virtual pages (VPs)  
stored on disk 

Physical pages (PPs)  
cached in DRAM 
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Enabling data structure: Page Table 

 A page table is an array of page table entries (PTEs) that 
maps virtual pages to physical pages.  
 Per-process kernel data structure in DRAM 

null 

null 

Memory resident 
page table 

(DRAM) 

Physical memory 
(DRAM) 

VP 7 
VP 4 

Virtual memory 
(disk) 

Valid 
0 

1 

0 
1 

0 

1 

0 

1 

Physical page 
number or  

disk address 
PTE 0 

PTE 7 

PP 0 
VP 2 

VP 1 

PP 3 

VP 1 

VP 2 

VP 4 

VP 6 

VP 7 

VP 3 
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Page Hit 

 Page hit: reference to VM word that is in physical memory 
(DRAM cache hit) 

null 

null 

Memory resident 
page table 

(DRAM) 

Physical memory 
(DRAM) 

VP 7 
VP 4 

Virtual memory 
(disk) 

Valid 
0 

1 

0 
1 

0 

1 

0 

1 

Physical page 
number or  

disk address 
PTE 0 

PTE 7 

PP 0 
VP 2 

VP 1 

PP 3 

VP 1 

VP 2 

VP 4 

VP 6 

VP 7 

VP 3 

Virtual address 
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Page Fault 

 Page fault: reference to VM word that is not in physical 
memory (DRAM cache miss) 

null 

null 

Memory resident 
page table 

(DRAM) 

Physical memory 
(DRAM) 

VP 7 
VP 4 

Virtual memory 
(disk) 

Valid 
0 

1 

0 
1 

0 

1 

0 

1 

Physical page 
number or  

disk address 
PTE 0 

PTE 7 

PP 0 
VP 2 

VP 1 

PP 3 

VP 1 

VP 2 

VP 4 

VP 6 

VP 7 

VP 3 

Virtual address 
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Handling Page Fault 
 Page miss causes page fault (an exception) 

null 

null 

Memory resident 
page table 

(DRAM) 

Physical memory 
(DRAM) 

VP 7 
VP 4 

Virtual memory 
(disk) 

Valid 
0 

1 

0 
1 

0 

1 

0 

1 

Physical page 
number or  

disk address 
PTE 0 

PTE 7 

PP 0 
VP 2 

VP 1 

PP 3 

VP 1 

VP 2 

VP 4 

VP 6 

VP 7 

VP 3 

Virtual address 
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Handling Page Fault 
 Page miss causes page fault (an exception) 

 Page fault handler selects a victim to be evicted (here VP 4) 

null 

null 

Memory resident 
page table 

(DRAM) 

Physical memory 
(DRAM) 

VP 7 
VP 4 

Virtual memory 
(disk) 

Valid 
0 

1 

0 
1 

0 

1 

0 

1 

Physical page 
number or  

disk address 
PTE 0 

PTE 7 

PP 0 
VP 2 

VP 1 

PP 3 

VP 1 

VP 2 

VP 4 

VP 6 

VP 7 

VP 3 

Virtual address 
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Handling Page Fault 
 Page miss causes page fault (an exception) 

 Page fault handler selects a victim to be evicted (here VP 4) 

null 

null 

Memory resident 
page table 

(DRAM) 

Physical memory 
(DRAM) 

VP 7 
VP 3 

Virtual memory 
(disk) 

Valid 
0 

1 
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0 

0 

1 

0 

1 
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Handling Page Fault 
 Page miss causes page fault (an exception) 

 Page fault handler selects a victim to be evicted (here VP 4) 

 Offending instruction is restarted: page hit! 

null 

null 
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page table 

(DRAM) 

Physical memory 
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Virtual memory 
(disk) 

Valid 
0 

1 
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0 
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Locality to the Rescue Again! 

 Virtual memory works because of locality 
 

 At any point in time, programs tend to access a set of active 
virtual pages called the working set 
 Programs with better temporal locality will have smaller working sets 

 

 If (working set size < main memory size)  
 Good performance for one process after compulsory misses 

 

 If ( SUM(working set sizes) > main memory size )  
 Thrashing: Performance meltdown where pages are moved (copied) in 

and out continuously 
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(2) VM as a Tool for Memory Management 

 Key idea: each process has its own virtual address space 
 It can view memory as a simple linear array 

 Mapping function scatters addresses through physical memory 

 Well chosen mappings simplify memory allocation and management 

Virtual 
Address 
Space for 
Process 1: 

Physical  
Address  
Space 
(DRAM) 

0 

N-1 

(e.g., read-only library code) 

Virtual 
Address 
Space for 
Process 2: 

VP 1 
VP 2 
... 

0 

N-1 

VP 1 
VP 2 
... 

PP 2 

PP 6 

PP 8 

... 

0 

M-1 

Address  
translation 
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Simplifying allocation and sharing 
 Memory allocation 

 Each virtual page can be mapped to any physical page 

 A virtual page can be stored in different physical pages at different times 

 Sharing code and data among processes 
 Map multiple virtual pages to the same physical page (here: PP 6) 

Virtual 
Address 
Space for 
Process 1: 

Physical  
Address  
Space 
(DRAM) 

0 

N-1 

(e.g., read-only library code) 

Virtual 
Address 
Space for 
Process 2: 

VP 1 
VP 2 
... 

0 

N-1 

VP 1 
VP 2 
... 

PP 2 

PP 6 

PP 8 

... 

0 

M-1 

Address  
translation 
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Simplifying Linking and Loading 

 Linking  
 Each program has similar virtual 

address space 

 Code, stack, and shared libraries 
always start at the same address 

 

 Loading  
 execve() allocates virtual pages 

for .text and .data sections  
= creates PTEs marked as invalid 

 The .text and .data sections 
are copied, page by page, on 
demand by the virtual memory 
system 

 

Kernel virtual memory 

Memory-mapped region for 
shared libraries 

Run-time heap 
(created by malloc) 

User stack 
(created at runtime) 

Unused 
0 

%esp  
(stack  
pointer) 

Memory 
invisible to 
user code 

brk 

0xc0000000 

0x08048000 

0x40000000 

Read/write segment 
(.data, .bss) 

Read-only segment 
(.init, .text, .rodata) 

Loaded  
from  
the  
executable  
file 
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VM as a Tool for Memory Protection 
 Extend PTEs with permission bits 

 Page fault handler checks these before remapping 
 If violated, send process SIGSEGV (segmentation fault) 

Process i: Address READ WRITE 

PP 6 Yes No 

PP 4 Yes Yes 

PP 2 Yes 

VP 0: 

VP 1: 

VP 2: 

• 
• 
• 

Process j: 

Yes 

SUP 

No 

No 

Yes 

Address READ WRITE 

PP 9 Yes No 

PP 6 Yes Yes 

PP 11 Yes Yes 

SUP 

No 

Yes 

No 

VP 0: 

VP 1: 

VP 2: 

Physical  
Address Space 

PP 2 

PP 4 

PP 6 

PP 8 

PP 9 

PP 11 
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VM Address Translation 

 Virtual Address Space 
 V = {0, 1, …, N–1} 

 Physical Address Space 
 P = {0, 1, …, M–1} 

 Address Translation 

 MAP:  V   P  U  {} 

 For virtual address a: 

 MAP(a)  =  a’  if data at virtual address a is at physical address a’ in P 

 MAP(a)  =  if data at virtual address a is not in physical memory 

– Either invalid or stored on disk 
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Summary of Address Translation Symbols 

 Basic Parameters 
 N = 2n : Number of addresses in virtual address space 

 M = 2m : Number of addresses in physical address space 

 P = 2p  : Page size (bytes) 

 Components of the virtual address (VA) 
 VPO: Virtual page offset  

 VPN: Virtual page number  

 TLBI: TLB index 

 TLBT: TLB tag 

 Components of the physical address (PA) 
 PPO: Physical page offset (same as VPO) 

 PPN: Physical page number 

 CO: Byte offset within cache line 

 CI: Cache index 

 CT: Cache tag 
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Address Translation With a Page Table 

Virtual page number (VPN) Virtual page offset (VPO) 

Virtual address 

Physical address 

Valid Physical page number (PPN) 

Page table  

Page table  
base register 

(PTBR) 

Page table address  
for process 

Valid bit = 0: 
page not in memory 

(page fault) 

0 p-1 p n-1 

Physical page offset (PPO) 

0 p-1 

Physical page number (PPN) 

p m-1 
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Address Translation: Page Hit 

1) Processor sends virtual address to MMU  

2-3) MMU fetches PTE from page table in memory 

4) MMU sends physical address to cache/memory 

5) Cache/memory sends data word to processor 

MMU 
Cache/ 
Memory PA 

Data 

CPU 
VA 

CPU Chip 
PTEA 

PTE 
1 

2 

3 

4 

5 
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Address Translation: Page Fault 

1) Processor sends virtual address to MMU  

2-3) MMU fetches PTE from page table in memory 

4) Valid bit is zero, so MMU triggers page fault exception 

5) Handler identifies victim (and, if dirty, pages it out to disk) 

6) Handler pages in new page and updates PTE in memory 

7) Handler returns to original process, restarting faulting instruction 

MMU Cache/ 
Memory 

CPU 
VA 

CPU Chip 
PTEA 

PTE 

1 

2 

3 

4 

5 

Disk 

Page fault handler 

Victim page 

New page 

Exception 

6 

7 
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Views of virtual memory 

 Programmer’s view of virtual memory 
 Each process has its own private linear address space 

 Cannot be corrupted by other processes 

 

 System view of virtual memory 
 Uses memory efficiently by caching virtual memory pages 

 Efficient only because of locality 

 Simplifies memory management and programming 

 Simplifies protection by providing a convenient interpositioning point 
to check permissions 
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Integrating VM and Cache 

VA 
CPU MMU 

PTEA 

PTE 

PA 

Data 

Memory 
PA PA 

miss 

PTEA PTEA 
miss 

PTEA  
hit 

PA  
hit 

Data 

PTE 

L1 
cache 

CPU Chip 

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address 
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Speeding up Translation with a TLB 

 Page table entries (PTEs) are cached in L1 like any other 
memory word 

 PTEs may be evicted by other data references 

 PTE hit still requires a small L1 delay 

 Solution: Translation Lookaside Buffer (TLB) 
 Small hardware cache in MMU 

 Maps virtual page numbers to  physical page numbers 

 Contains complete page table entries for small number of pages 
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TLB Hit 

MMU 
Cache/ 
Memory 

PA 

Data 

CPU 
VA 

CPU Chip 

PTE 

1 

2 

4 

5 

A TLB hit eliminates a memory access 

TLB 

VPN 3 
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TLB Miss 

MMU 
Cache/ 
Memory PA 

Data 

CPU 
VA 

CPU Chip 

PTE 

1 

2 

5 

6 

TLB 

VPN 

4 

PTEA 

3 

A TLB miss incurs an additional memory access (the PTE) 
Fortunately, TLB misses are rare. Why? 
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Conclusions 
(1) VM allows efficient use of limited main memory (RAM) 

 Use RAM as a cache for the parts of a virtual address space 

 some non-cached parts stored on disk 

 some (unallocated) non-cached parts stored nowhere 

 Keep only active areas of virtual address space in memory 

 transfer data back and forth as needed 

 

(2) VM simplifies memory management for programmers 
 Each process gets a full, private linear address space 

 

(3) VM isolates address spaces 
 One process can’t interfere with another’s memory  

 because they operate in different address spaces 

 User process cannot access privileged information 

 different sections of address spaces have different permissions 


