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Today 

 Explicit free lists  

 Segregated free lists 

 Garbage collection 

 Memory-related perils and pitfalls 
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Keeping Track of Free Blocks 

 Method 1: Implicit free list using length—links all blocks 

 

 

 

 Method 2: Explicit free list among the free blocks using pointers 

 

 
 
 Method 3: Segregated free list 

 Different free lists for different size classes 

 

 Method 4: Blocks sorted by size 
 Can use a balanced tree (e.g. Red-Black tree) with pointers within each 

free block, and the length used as a key 

5 4 2 6 

5 4 2 6 
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Explicit Free Lists 

 Maintain list(s) of free blocks, not all blocks 
 The “next” free block could be anywhere 

 So we need to store forward/back pointers, not just sizes 

 Still need boundary tags for coalescing 

 Luckily we track only free blocks, so we can use payload area 

Size 

Payload and 
padding 

a 

Size a 

Size a 

Size a 

Next 

Prev 

Allocated (as before) Free 
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Explicit Free Lists 

 Logically: 

 

 

 

 

 Physically: blocks can be in any order 

A B C 

4 4 4 4 6 6 4 4 4 4 

Forward (next) links 

Back (prev) links 

A B 

C 
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Allocating From Explicit Free Lists 

Before 

After 

= malloc(…) 

(with splitting) 

conceptual graphic 
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Freeing With Explicit Free Lists 

 Insertion policy: Where in the free list do you put a newly 
freed block? 
 LIFO (last-in-first-out) policy 

 Insert freed block at the beginning of the free list 

 Pro: simple and constant time 

 Con: studies suggest fragmentation is worse than address ordered 

 

 Address-ordered policy 

 Insert freed blocks so that free list blocks are always in address 

order:  

          addr(prev) < addr(curr) < addr(next) 

  Con: requires search 

  Pro: studies suggest fragmentation is lower than LIFO 
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Freeing With a LIFO Policy (Case 1) 

 Insert the freed block at the root of the list 

free( ) 

Root 

Root 

Before 

After 

conceptual graphic 
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Freeing With a LIFO Policy (Case 2) 

 Splice out predecessor block, coalesce both memory blocks, 
and insert the new block at the root of the list 

free( ) 

Root 

Root 

Before 

After 

conceptual graphic 
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Freeing With a LIFO Policy (Case 3) 

 Splice out successor block, coalesce both memory blocks and 
insert the new block at the root of the list 

free( ) 

Root 

Root 

Before 

After 

conceptual graphic 
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Freeing With a LIFO Policy (Case 4) 

 Splice out predecessor and successor blocks, coalesce all 3 
memory blocks and insert the new block at the root of the list 

free( ) 

Root 

Root 

Before 

After 

conceptual graphic 
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Explicit List Summary 

 Comparison to implicit list: 
 Allocate is linear time in number of free blocks instead of all blocks 

 Much faster when most of the memory is full  

 Slightly more complicated allocate and free since needs to splice blocks 
in and out of the list 

 Some extra space for the links (2 extra  words needed for each block) 

 Does this increase internal fragmentation? 

 

 Most common use of linked lists is in conjunction with 
segregated free lists 
 Keep multiple linked lists of different size classes, or possibly for 

different types of objects 
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Keeping Track of Free Blocks 

 Method 1: Implicit list using length—links all blocks 

 

 

 

 Method 2: Explicit list among the free blocks using pointers 

 

 
 
 Method 3: Segregated free list 

 Different free lists for different size classes 

 

 Method 4: Blocks sorted by size 
 Can use a balanced tree (e.g. Red-Black tree) with pointers within each 

free block, and the length used as a key 

5 4 2 6 

5 4 2 6 
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 Segregated free lists 

 Garbage collection 

 Memory-related perils and pitfalls 
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Segregated List (Seglist) Allocators 

 Each size class of blocks has its own free list 

 

 

 

 

 

 

 

 

 

 Often have separate classes for each small size 

 For larger sizes: One class for each two-power size 

1-2 

3 

4 

5-8 

9-inf 
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Seglist Allocator 

 Given an array of free lists, each one for some size class 

 

 To allocate a block of size n: 
 Search appropriate free list for block of size m > n 

 If an appropriate block is found: 

 Split block and place fragment on appropriate list (optional) 

 If no block is found, try next larger class 

 Repeat until block is found 

 

 If no block is found: 
 Request additional heap memory from OS (using sbrk()) 

 Allocate block of n bytes from this new memory 

 Place remainder as a single free block in largest size class. 
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Seglist Allocator (cont.) 

 To free a block: 
 Coalesce and place on appropriate list  

 

 Advantages of seglist allocators 
 Higher throughput 

  log time for power-of-two size classes 

 Better memory utilization 

 First-fit search of segregated free list approximates a best-fit 

search of entire heap. 

 Extreme case: Giving each block its own size class is equivalent to 

best-fit. 
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More Info on Allocators 

 D. Knuth, “The Art of Computer Programming”, 2nd edition, 
Addison Wesley, 1973 
 The classic reference on dynamic storage allocation 

 

 Wilson et al, “Dynamic Storage Allocation: A Survey and 
Critical Review”, Proc. 1995 Int’l Workshop on Memory 
Management, Kinross, Scotland, Sept, 1995. 
 Comprehensive survey 

 Available from CS:APP student site (csapp.cs.cmu.edu) 
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Implicit Memory Management: 
Garbage Collection 

 Garbage collection: automatic reclamation of heap-allocated 
storage—application never has to free 

 

 

 

 

 Common in many dynamic languages: 
 Python, Ruby, Java, Perl, ML, Lisp, Mathematica 

 

 Variants (“conservative” garbage collectors) exist for C and C++ 
 However, cannot necessarily collect all garbage 

 

 

void foo() { 

   int *p = malloc(128); 

   return; /* p block is now garbage */ 

} 
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Garbage Collection 

 How does the memory manager know when memory can be 
freed? 
 In general we cannot know what is going to be used in the future since it 

depends on conditionals 

 But we can tell that certain blocks cannot be used if there are no 
pointers to them 

 

 Must make certain assumptions about pointers 
 Memory manager can distinguish pointers from non-pointers 

 All pointers point to the start of a block  

 Cannot hide pointers  
(e.g., by coercing them to an int, and then back again) 
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Classical GC Algorithms 

 Mark-and-sweep collection (McCarthy, 1960) 
 Does not move blocks (unless you also “compact”) 

 Reference counting (Collins, 1960) 
 Does not move blocks (not discussed) 

 Copying collection (Minsky, 1963) 
 Moves blocks (not discussed) 

 Generational Collectors (Lieberman and Hewitt, 1983) 
 Collection based on lifetimes 

 Most allocations become garbage very soon 

 So focus reclamation work on zones of memory recently allocated 

 For more information:  
Jones and Lin, “Garbage Collection: Algorithms for Automatic 
Dynamic Memory”, John Wiley & Sons, 1996. 
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Memory as a Graph 
 We view memory as a directed graph 

 Each block is a node in the graph  

 Each pointer is an edge in the graph 

 Locations not in the heap that contain pointers into the heap are called 
root  nodes  (e.g. registers, locations on the stack, global variables) 

Root nodes 

Heap nodes 

Not-reachable 
(garbage) 

reachable 

A node (block) is reachable  if there is a path from any root to that node. 

Non-reachable nodes are garbage (cannot be needed by the application) 
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Mark and Sweep Collecting 

 Can build on top of malloc/free package 
 Allocate using malloc until you “run out of space” 

 When out of space: 
 Use extra mark bit in the head of each block 

 Mark: Start at roots and set mark bit on each reachable block 

 Sweep: Scan all blocks and free blocks that are not marked 

 

After mark Mark bit set 

After sweep free free 

root 

Before mark 

Note: arrows 
here denote 

memory refs, not 
free list ptrs.  
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Assumptions For a Simple Implementation 

 Application 
 new(n):  returns pointer to new block with all locations cleared 

 read(b,i): read location i of block b into register 

 write(b,i,v): write v into location i of block b 

 

 Each block will have a header word 
 addressed as b[-1], for a block b 

 Used for different purposes in different collectors 

 

 Instructions used by the Garbage Collector 
 is_ptr(p): determines whether p is a pointer 

 length(b):  returns the length of block b, not including the header 

 get_roots():  returns all the roots 
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Mark and Sweep (cont.) 

ptr mark(ptr p) { 

   if (!is_ptr(p)) return;        // do nothing if not pointer 

   if (markBitSet(p)) return;     // check if already marked 

   setMarkBit(p);                 // set the mark bit 

   for (i=0; i < length(p); i++)  // call mark on all words 

     mark(p[i]);       //   in the block 

   return; 

}       

Mark using depth-first traversal of the memory graph  

Sweep using lengths to find next block 

ptr sweep(ptr p, ptr end) { 

   while (p < end) { 

      if markBitSet(p) 

         clearMarkBit(); 

      else if (allocateBitSet(p))  

         free(p); 

      p += length(p); 

}      
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Conservative Mark & Sweep in C 

 A “conservative garbage collector” for C programs 
 is_ptr() determines if a word is a pointer by checking if it points to 

an allocated block of memory 

 But, in C pointers can point to the middle of a block 
 

 

 

 So how to find the beginning of the block? 
 Can use a balanced binary tree to keep track of all allocated blocks (key 

is start-of-block) 

 Balanced-tree pointers can be stored in header (use two additional 
words) 

Header 

ptr 

Head Data 

Left Right 

Size 
Left: smaller addresses 
Right: larger addresses 
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Memory-Related Perils and Pitfalls 

 Dereferencing bad pointers 

 Reading uninitialized memory 

 Overwriting memory 

 Referencing nonexistent variables 

 Freeing blocks multiple times 

 Referencing freed blocks 

 Failing to free blocks 
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C operators 
Operators     Associativity 
()  []  ->  .     left to right 
!  ~  ++  --  +  -  *  & (type) sizeof right to left 
*  /  %     left to right 
+  -      left to right 
<<  >>      left to right 
<  <=  >  >=     left to right 
==  !=      left to right 
&      left to right 
^      left to right 
|      left to right 
&&      left to right 
||      left to right 
?:      right to left 
= += -= *= /= %= &= ^= != <<= >>=  right to left 
,      left to right 

  ->, (), and [] have high precedence, with * and & just below 

 Unary +, -, and * have higher precedence than binary forms 

Source: K&R page 53 
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C Pointer Declarations: Test Yourself! 
int *p  

 

int *p[13]  

 

int *(p[13])  

 

int **p  

 
int (*p)[13]   

 
int *f()   

 
int (*f)()   

 

int (*(*f())[13])()  

 

 

int (*(*x[3])())[5] 

 

p is a pointer to int 

p is an array[13] of pointer to int 

p is an array[13] of pointer to int 

p is a pointer to a pointer to an int 

p is a pointer to an array[13] of int 

f is a function returning a pointer to int 

f is a pointer to a function returning int 

f is a function returning ptr to an array[13] 
of pointers to functions returning int 

x is an array[3] of pointers  to functions  
returning pointers to array[5] of ints 

Source: K&R Sec 5.12 
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Dereferencing Bad Pointers 

 The classic scanf bug 

int val; 

 

... 

 

scanf(“%d”, val); 
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Reading Uninitialized Memory 

 Assuming that heap data is initialized to zero 

/* return y = Ax */ 

int *matvec(int **A, int *x) {  

   int *y = malloc(N*sizeof(int)); 

   int i, j; 

 

   for (i=0; i<N; i++) 

      for (j=0; j<N; j++) 

         y[i] += A[i][j]*x[j]; 

   return y; 

} 
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Overwriting Memory 

 Allocating the (possibly) wrong sized object 

int **p; 

 

p = malloc(N*sizeof(int)); 

 

for (i=0; i<N; i++) { 

   p[i] = malloc(M*sizeof(int)); 

} 
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Overwriting Memory 

 Off-by-one error 

int **p; 

 

p = malloc(N*sizeof(int *)); 

 

for (i=0; i<=N; i++) { 

   p[i] = malloc(M*sizeof(int)); 

} 
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Overwriting Memory 
 Not checking the max string size 

 

 

 

 

 

 

 Basis for classic buffer overflow attacks 

char s[8]; 

int i; 

 

gets(s);  /* reads “123456789” from stdin */  
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Overwriting Memory 

 Misunderstanding pointer arithmetic 

int *search(int *p, int val) { 

    

   while (*p && *p != val) 

      p += sizeof(int); 

 

   return p; 

} 
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Overwriting Memory 

 Referencing a pointer instead of the object it points to 

int *BinheapDelete(int **binheap, int *size) { 

   int *packet; 

   packet = binheap[0]; 

   binheap[0] = binheap[*size - 1]; 

   *size--; 

   Heapify(binheap, *size, 0); 

   return(packet); 

} 
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Referencing Nonexistent Variables 

 Forgetting that local variables disappear when a function 
returns 

int *foo () { 

   int val; 

 

   return &val; 

}   
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Freeing Blocks Multiple Times 

 Nasty! 

x = malloc(N*sizeof(int)); 

        <manipulate x> 

free(x); 

 

y = malloc(M*sizeof(int)); 

        <manipulate y> 

free(x); 
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Referencing Freed Blocks 

 Evil!  

x = malloc(N*sizeof(int)); 

  <manipulate x> 

free(x); 

   ... 

y = malloc(M*sizeof(int)); 

for (i=0; i<M; i++) 

   y[i] = x[i]++; 



Carnegie Mellon 

42 

Failing to Free Blocks (Memory Leaks) 

 Slow, long-term killer!  

foo() { 

   int *x = malloc(N*sizeof(int)); 

   ... 

   return; 

} 
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Failing to Free Blocks (Memory Leaks) 

 Freeing only part of a data structure 

struct list { 

   int val; 

   struct list *next; 

}; 

 

foo() { 

   struct list *head = malloc(sizeof(struct list)); 

   head->val = 0; 

   head->next = NULL; 

   <create and manipulate the rest of the list> 

    ... 

   free(head); 

   return; 

} 
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Dealing With Memory Bugs 
 Conventional debugger (gdb) 

 Good for finding  bad pointer dereferences 

 Hard to detect the other memory bugs 

 

 Debugging malloc (UToronto CSRI malloc) 
 Wrapper around conventional malloc 

 Detects memory bugs at malloc and free boundaries 

 Memory overwrites that corrupt heap structures 

 Some instances of freeing blocks multiple times 

 Memory leaks 

 Cannot detect all memory bugs 

 Overwrites into the middle of allocated blocks 

 Freeing block twice that has been reallocated in the interim 

 Referencing freed blocks 
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Dealing With Memory Bugs (cont.) 

 Some malloc implementations contain checking code 
 Linux glibc malloc: setenv MALLOC_CHECK_ 3  

 FreeBSD: setenv MALLOC_OPTIONS AJR  

 Binary translator:  valgrind (Linux), Purify 
 Powerful debugging and analysis technique 

 Rewrites text section of executable object file 

 Can detect all errors as debugging malloc 

 Can also check each individual reference at runtime 

 Bad pointers 

 Overwriting 

 Referencing outside of allocated block 

 Garbage collection (Boehm-Weiser Conservative GC) 
 Let the system free blocks instead of the programmer. 


