
Carnegie Mellon

1

Dynamic Memory Allocation:
Advanced Concepts

15-213 / 18-213/15-513: Introduction to Computer Systems
19th Lecture, July 9th, 2013

Instructors:

Greg Kesden

Carnegie Mellon

2

Today

 Explicit free lists

 Segregated free lists

 Garbage collection

 Memory-related perils and pitfalls

Carnegie Mellon

3

Keeping Track of Free Blocks

 Method 1: Implicit free list using length—links all blocks

 Method 2: Explicit free list among the free blocks using pointers

 Method 3: Segregated free list

 Different free lists for different size classes

 Method 4: Blocks sorted by size
 Can use a balanced tree (e.g. Red-Black tree) with pointers within each

free block, and the length used as a key

5 4 2 6

5 4 2 6

Carnegie Mellon

4

Explicit Free Lists

 Maintain list(s) of free blocks, not all blocks
 The “next” free block could be anywhere

 So we need to store forward/back pointers, not just sizes

 Still need boundary tags for coalescing

 Luckily we track only free blocks, so we can use payload area

Size

Payload and
padding

a

Size a

Size a

Size a

Next

Prev

Allocated (as before) Free

Carnegie Mellon

5

Explicit Free Lists

 Logically:

 Physically: blocks can be in any order

A B C

4 4 4 4 6 6 4 4 4 4

Forward (next) links

Back (prev) links

A B

C

Carnegie Mellon

6

Allocating From Explicit Free Lists

Before

After

= malloc(…)

(with splitting)

conceptual graphic

Carnegie Mellon

7

Freeing With Explicit Free Lists

 Insertion policy: Where in the free list do you put a newly
freed block?
 LIFO (last-in-first-out) policy

 Insert freed block at the beginning of the free list

 Pro: simple and constant time

 Con: studies suggest fragmentation is worse than address ordered

 Address-ordered policy

 Insert freed blocks so that free list blocks are always in address

order:

 addr(prev) < addr(curr) < addr(next)

 Con: requires search

 Pro: studies suggest fragmentation is lower than LIFO

Carnegie Mellon

8

Freeing With a LIFO Policy (Case 1)

 Insert the freed block at the root of the list

free()

Root

Root

Before

After

conceptual graphic

Carnegie Mellon

9

Freeing With a LIFO Policy (Case 2)

 Splice out predecessor block, coalesce both memory blocks,
and insert the new block at the root of the list

free()

Root

Root

Before

After

conceptual graphic

Carnegie Mellon

10

Freeing With a LIFO Policy (Case 3)

 Splice out successor block, coalesce both memory blocks and
insert the new block at the root of the list

free()

Root

Root

Before

After

conceptual graphic

Carnegie Mellon

11

Freeing With a LIFO Policy (Case 4)

 Splice out predecessor and successor blocks, coalesce all 3
memory blocks and insert the new block at the root of the list

free()

Root

Root

Before

After

conceptual graphic

Carnegie Mellon

12

Explicit List Summary

 Comparison to implicit list:
 Allocate is linear time in number of free blocks instead of all blocks

 Much faster when most of the memory is full

 Slightly more complicated allocate and free since needs to splice blocks
in and out of the list

 Some extra space for the links (2 extra words needed for each block)

 Does this increase internal fragmentation?

 Most common use of linked lists is in conjunction with
segregated free lists
 Keep multiple linked lists of different size classes, or possibly for

different types of objects

Carnegie Mellon

13

Keeping Track of Free Blocks

 Method 1: Implicit list using length—links all blocks

 Method 2: Explicit list among the free blocks using pointers

 Method 3: Segregated free list

 Different free lists for different size classes

 Method 4: Blocks sorted by size
 Can use a balanced tree (e.g. Red-Black tree) with pointers within each

free block, and the length used as a key

5 4 2 6

5 4 2 6

Carnegie Mellon

14

Today

 Explicit free lists

 Segregated free lists

 Garbage collection

 Memory-related perils and pitfalls

Carnegie Mellon

15

Segregated List (Seglist) Allocators

 Each size class of blocks has its own free list

 Often have separate classes for each small size

 For larger sizes: One class for each two-power size

1-2

3

4

5-8

9-inf

Carnegie Mellon

16

Seglist Allocator

 Given an array of free lists, each one for some size class

 To allocate a block of size n:
 Search appropriate free list for block of size m > n

 If an appropriate block is found:

 Split block and place fragment on appropriate list (optional)

 If no block is found, try next larger class

 Repeat until block is found

 If no block is found:
 Request additional heap memory from OS (using sbrk())

 Allocate block of n bytes from this new memory

 Place remainder as a single free block in largest size class.

Carnegie Mellon

17

Seglist Allocator (cont.)

 To free a block:
 Coalesce and place on appropriate list

 Advantages of seglist allocators
 Higher throughput

 log time for power-of-two size classes

 Better memory utilization

 First-fit search of segregated free list approximates a best-fit

search of entire heap.

 Extreme case: Giving each block its own size class is equivalent to

best-fit.

Carnegie Mellon

18

More Info on Allocators

 D. Knuth, “The Art of Computer Programming”, 2nd edition,
Addison Wesley, 1973
 The classic reference on dynamic storage allocation

 Wilson et al, “Dynamic Storage Allocation: A Survey and
Critical Review”, Proc. 1995 Int’l Workshop on Memory
Management, Kinross, Scotland, Sept, 1995.
 Comprehensive survey

 Available from CS:APP student site (csapp.cs.cmu.edu)

Carnegie Mellon

19

Today

 Explicit free lists

 Segregated free lists

 Garbage collection

 Memory-related perils and pitfalls

Carnegie Mellon

20

Implicit Memory Management:
Garbage Collection

 Garbage collection: automatic reclamation of heap-allocated
storage—application never has to free

 Common in many dynamic languages:
 Python, Ruby, Java, Perl, ML, Lisp, Mathematica

 Variants (“conservative” garbage collectors) exist for C and C++
 However, cannot necessarily collect all garbage

void foo() {

 int *p = malloc(128);

 return; /* p block is now garbage */

}

Carnegie Mellon

21

Garbage Collection

 How does the memory manager know when memory can be
freed?
 In general we cannot know what is going to be used in the future since it

depends on conditionals

 But we can tell that certain blocks cannot be used if there are no
pointers to them

 Must make certain assumptions about pointers
 Memory manager can distinguish pointers from non-pointers

 All pointers point to the start of a block

 Cannot hide pointers
(e.g., by coercing them to an int, and then back again)

Carnegie Mellon

22

Classical GC Algorithms

 Mark-and-sweep collection (McCarthy, 1960)
 Does not move blocks (unless you also “compact”)

 Reference counting (Collins, 1960)
 Does not move blocks (not discussed)

 Copying collection (Minsky, 1963)
 Moves blocks (not discussed)

 Generational Collectors (Lieberman and Hewitt, 1983)
 Collection based on lifetimes

 Most allocations become garbage very soon

 So focus reclamation work on zones of memory recently allocated

 For more information:
Jones and Lin, “Garbage Collection: Algorithms for Automatic
Dynamic Memory”, John Wiley & Sons, 1996.

Carnegie Mellon

23

Memory as a Graph
 We view memory as a directed graph

 Each block is a node in the graph

 Each pointer is an edge in the graph

 Locations not in the heap that contain pointers into the heap are called
root nodes (e.g. registers, locations on the stack, global variables)

Root nodes

Heap nodes

Not-reachable
(garbage)

reachable

A node (block) is reachable if there is a path from any root to that node.

Non-reachable nodes are garbage (cannot be needed by the application)

Carnegie Mellon

24

Mark and Sweep Collecting

 Can build on top of malloc/free package
 Allocate using malloc until you “run out of space”

 When out of space:
 Use extra mark bit in the head of each block

 Mark: Start at roots and set mark bit on each reachable block

 Sweep: Scan all blocks and free blocks that are not marked

After mark Mark bit set

After sweep free free

root

Before mark

Note: arrows
here denote

memory refs, not
free list ptrs.

Carnegie Mellon

25

Assumptions For a Simple Implementation

 Application
 new(n): returns pointer to new block with all locations cleared

 read(b,i): read location i of block b into register

 write(b,i,v): write v into location i of block b

 Each block will have a header word
 addressed as b[-1], for a block b

 Used for different purposes in different collectors

 Instructions used by the Garbage Collector
 is_ptr(p): determines whether p is a pointer

 length(b): returns the length of block b, not including the header

 get_roots(): returns all the roots

Carnegie Mellon

26

Mark and Sweep (cont.)

ptr mark(ptr p) {

 if (!is_ptr(p)) return; // do nothing if not pointer

 if (markBitSet(p)) return; // check if already marked

 setMarkBit(p); // set the mark bit

 for (i=0; i < length(p); i++) // call mark on all words

 mark(p[i]); // in the block

 return;

}

Mark using depth-first traversal of the memory graph

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {

 while (p < end) {

 if markBitSet(p)

 clearMarkBit();

 else if (allocateBitSet(p))

 free(p);

 p += length(p);

}

Carnegie Mellon

27

Conservative Mark & Sweep in C

 A “conservative garbage collector” for C programs
 is_ptr() determines if a word is a pointer by checking if it points to

an allocated block of memory

 But, in C pointers can point to the middle of a block

 So how to find the beginning of the block?
 Can use a balanced binary tree to keep track of all allocated blocks (key

is start-of-block)

 Balanced-tree pointers can be stored in header (use two additional
words)

Header

ptr

Head Data

Left Right

Size
Left: smaller addresses
Right: larger addresses

Carnegie Mellon

28

Today

 Explicit free lists

 Segregated free lists

 Garbage collection

 Memory-related perils and pitfalls

Carnegie Mellon

29

Memory-Related Perils and Pitfalls

 Dereferencing bad pointers

 Reading uninitialized memory

 Overwriting memory

 Referencing nonexistent variables

 Freeing blocks multiple times

 Referencing freed blocks

 Failing to free blocks

Carnegie Mellon

30

C operators
Operators Associativity
() [] -> . left to right
! ~ ++ -- + - * & (type) sizeof right to left
* / % left to right
+ - left to right
<< >> left to right
< <= > >= left to right
== != left to right
& left to right
^ left to right
| left to right
&& left to right
|| left to right
?: right to left
= += -= *= /= %= &= ^= != <<= >>= right to left
, left to right

 ->, (), and [] have high precedence, with * and & just below

 Unary +, -, and * have higher precedence than binary forms

Source: K&R page 53

Carnegie Mellon

31

C Pointer Declarations: Test Yourself!
int *p

int *p[13]

int *(p[13])

int **p

int (*p)[13]

int *f()

int (*f)()

int (*(*f())[13])()

int (*(*x[3])())[5]

p is a pointer to int

p is an array[13] of pointer to int

p is an array[13] of pointer to int

p is a pointer to a pointer to an int

p is a pointer to an array[13] of int

f is a function returning a pointer to int

f is a pointer to a function returning int

f is a function returning ptr to an array[13]
of pointers to functions returning int

x is an array[3] of pointers to functions
returning pointers to array[5] of ints

Source: K&R Sec 5.12

Carnegie Mellon

32

Dereferencing Bad Pointers

 The classic scanf bug

int val;

...

scanf(“%d”, val);

Carnegie Mellon

33

Reading Uninitialized Memory

 Assuming that heap data is initialized to zero

/* return y = Ax */

int *matvec(int **A, int *x) {

 int *y = malloc(N*sizeof(int));

 int i, j;

 for (i=0; i<N; i++)

 for (j=0; j<N; j++)

 y[i] += A[i][j]*x[j];

 return y;

}

Carnegie Mellon

34

Overwriting Memory

 Allocating the (possibly) wrong sized object

int **p;

p = malloc(N*sizeof(int));

for (i=0; i<N; i++) {

 p[i] = malloc(M*sizeof(int));

}

Carnegie Mellon

35

Overwriting Memory

 Off-by-one error

int **p;

p = malloc(N*sizeof(int *));

for (i=0; i<=N; i++) {

 p[i] = malloc(M*sizeof(int));

}

Carnegie Mellon

36

Overwriting Memory
 Not checking the max string size

 Basis for classic buffer overflow attacks

char s[8];

int i;

gets(s); /* reads “123456789” from stdin */

Carnegie Mellon

37

Overwriting Memory

 Misunderstanding pointer arithmetic

int *search(int *p, int val) {

 while (*p && *p != val)

 p += sizeof(int);

 return p;

}

Carnegie Mellon

38

Overwriting Memory

 Referencing a pointer instead of the object it points to

int *BinheapDelete(int **binheap, int *size) {

 int *packet;

 packet = binheap[0];

 binheap[0] = binheap[*size - 1];

 *size--;

 Heapify(binheap, *size, 0);

 return(packet);

}

Carnegie Mellon

39

Referencing Nonexistent Variables

 Forgetting that local variables disappear when a function
returns

int *foo () {

 int val;

 return &val;

}

Carnegie Mellon

40

Freeing Blocks Multiple Times

 Nasty!

x = malloc(N*sizeof(int));

 <manipulate x>

free(x);

y = malloc(M*sizeof(int));

 <manipulate y>

free(x);

Carnegie Mellon

41

Referencing Freed Blocks

 Evil!

x = malloc(N*sizeof(int));

 <manipulate x>

free(x);

 ...

y = malloc(M*sizeof(int));

for (i=0; i<M; i++)

 y[i] = x[i]++;

Carnegie Mellon

42

Failing to Free Blocks (Memory Leaks)

 Slow, long-term killer!

foo() {

 int *x = malloc(N*sizeof(int));

 ...

 return;

}

Carnegie Mellon

43

Failing to Free Blocks (Memory Leaks)

 Freeing only part of a data structure

struct list {

 int val;

 struct list *next;

};

foo() {

 struct list *head = malloc(sizeof(struct list));

 head->val = 0;

 head->next = NULL;

 <create and manipulate the rest of the list>

 ...

 free(head);

 return;

}

Carnegie Mellon

44

Dealing With Memory Bugs
 Conventional debugger (gdb)

 Good for finding bad pointer dereferences

 Hard to detect the other memory bugs

 Debugging malloc (UToronto CSRI malloc)
 Wrapper around conventional malloc

 Detects memory bugs at malloc and free boundaries

 Memory overwrites that corrupt heap structures

 Some instances of freeing blocks multiple times

 Memory leaks

 Cannot detect all memory bugs

 Overwrites into the middle of allocated blocks

 Freeing block twice that has been reallocated in the interim

 Referencing freed blocks

Carnegie Mellon

45

Dealing With Memory Bugs (cont.)

 Some malloc implementations contain checking code
 Linux glibc malloc: setenv MALLOC_CHECK_ 3

 FreeBSD: setenv MALLOC_OPTIONS AJR

 Binary translator: valgrind (Linux), Purify
 Powerful debugging and analysis technique

 Rewrites text section of executable object file

 Can detect all errors as debugging malloc

 Can also check each individual reference at runtime

 Bad pointers

 Overwriting

 Referencing outside of allocated block

 Garbage collection (Boehm-Weiser Conservative GC)
 Let the system free blocks instead of the programmer.

