
Full Name:

Andrew ID (print clearly!):

15-213/18-213, Spring 2013

SOLUTIONS TO Exam 1
Tuesday, March 5, 2013

Instructions:

• Make sure that your exam has 14 pages and is not missing any sheets, then write your full name and
Andrew login ID on the front.

• This exam is closed book. You may not use any electronic devices. You may use one single-sided
page of notes that you bring to the exam.

• Write your answers in the space provided below the problem. If you make a mess, clearly indicate
your final answer.

• The exam has a maximum score of 100 points.

• The problems are of varying difficulty. The point value of each problem is indicated. Good luck!

Problem Your Score Possible Points

1 14

2 20

3 6

4 13

5 9

6 15

7 23

Total 100

1 of 14

Problem 1: (14 pts)

Please answer the following multiple choice questions by writing the correct number in the blank to the
right of the question.

A) What is a linker? 1

1. It combines object files into an executable.
2. It turns assembly code into machine code.
3. It translates source code to assembly.
4. It executes source code.

B) What is true about pending and/or blocked signals? 4

1. User applications maintain the pending and blocked vectors for each process.
2. Blocked signals cannot be delivered to the blocking process.
3. Signals of the same type can be queued when they are pending.
4. Pending signals of the same type can only be received once.

C) Which of the following is the BEST example of spatial locality? 1

1. Referencing array elements in succession.
2. Cycling through a loop repeatedly.
3. Allocating space for a struct or a union.
4. Continuously referencing the same local variable.

D) What is a fundamental idea of the memory hierarchy? 3

1. To create a large amount of storage that is expensive and fast.
2. To create a small amount of storage that is expensive and slow.
3. Smaller, faster devices serve as caches for larger, slower devices.
4. Larger, slower devices serve as caches for smaller, faster devices.

E) In datalab, what was one thing you had to check to solve bang()? 4

1. Whether the input’s least significant byte was 0xFF.
2. Whether the input’s most significant byte was 0xFF.
3. Whether the input’s most significant bit was set to 1.
4. Whether the input’s negation was equal to the input.

F) In bomblab, how were arguments to functions passed? 2

1. Via memory.
2. Via registers.
3. Via the stack.
4. Via files.

2 of 14 Continued . . .

(Question 1 cont’d)

G) In the Dynamite phase of buflab, what was one valid way to restore %ebp? 3

1. By setting %ebp equal to %esp in your exploit code.
2. By using %ebp as is and not restoring it at all.
3. By finding %ebp with GDB and restoring it in your exploit.
4. By finding %ebp with the disassembly and restoring it in your exploit.

H) Which of the following is NOT true about the cachelab cache simulator? 2

1. It used the B value to get the offset set bits.
2. It stored content from memory using the addresses.
3. It did not use ”size” from the Valgrind traces.
4. It needed tag bits to simulate evictions.

I) The shark machines are which endianness? 1

1. Little Endian
2. Big Endian

J) Which of the following is NOT a strong symbol? 2

1. Procedures
2. Uninitialized globals
3. Initialized globals

K) In buflab, what was the fundamental problem that allowed for arbitrary code execution? 2

1. The buffer was allocated with malloc.
2. The ”Gets” function wrote outside of the buffer memory
3. The use of a 64-bit machine.

L) The difference between dynamite and nitro in buflab was: 5

1. in nitro, %ebp could be set to an absolute value
2. in dynamite, the nop sled had a variable position
3. in nitro, the nop sled had a fixed position
4. all of the above
5. none of the above

M) A nop sled is ... 3

1. a degradation of cache performance due to spillover from one level of cache to the next
2. a buffer overflow technique that uses assembly instruction sled
3. a collection of nop assembly instructions leading the %eip to the exploit
4. none of the above

3 of 14

Problem 2: Interpreting Assembly (20 pts)

Consider the following C code compiled for a 32-bit x86 machine:

struct point
{

char x;
double y;
int z;

};

int el(int x);
int psy(int x);
int congroo(struct point *t);

int main()
{

struct point p = {8, 5000, 103};
int answer1 = el(-251);
int answer2 = psy(56);
int answer3 = congroo(&p);
printf("answer1 = %d\n", answer1);
printf("answer2 = %d\n", answer2);
printf("answer3 = %d\n", answer3);
return 0;

}

Using the following assembly code for el(), psy(), and congroo(), as well as the C code, answer the
questions on the next page about each function’s output and behavior:

080483c5 <el>:
80483c5: 55 push %ebp
80483c6: 89 e5 mov %esp,%ebp
80483c8: 8b 55 08 mov 0x8(%ebp),%edx
80483cb: b8 00 00 00 00 mov $0x0,%eax
80483cd: eb 06 jmp 80483d3 <el+0xe>
80483ce: 83 c0 01 add $0x1,%eax
80483d0: 83 c2 01 add $0x1,%edx
80483d3: 85 d2 test %edx,%edx
80483d5: 78 f3 js 80483ce <el+0x9>
80483d8: c9 leave
80483d9: c3 ret

080483da <psy>:
80483da: 55 push %ebp
80483db: 89 e5 mov %esp,%ebp
80483dd: 8b 55 08 mov 0x8(%ebp),%edx
80483e0: f7 da neg %edx
80483e2: b8 00 00 00 00 mov $0x0,%eax
80483e7: 83 fa f9 cmp $0xfffffff9,%edx
80483ea: 74 0a je 80483f6 <psy+0x1c>
80483ec: d1 fa sar %edx
80483ee: 83 c0 01 add $0x1,%eax
80483f1: 83 fa f9 cmp $0xfffffff9,%edx
80483f4: 75 f6 jne 80483ec <psy+0x12>
80483f6: c9 leave
80483f7: c3 ret

080483f8 <congroo>:
80483f8: 55 push %ebp
80483f9: 89 e5 mov %esp,%ebp
80483fb: 8b 45 08 mov 0x8(%ebp),%eax
80483fe: 0f be 08 movsbl (%eax),%ecx
8048401: 8b 50 0c mov 0xc(%eax),%edx
8048404: 89 d0 mov %edx,%eax
8048406: c1 fa 1f sar $0x1f,%edx
8048409: f7 f9 idiv %ecx
804840b: 89 d0 mov %edx,%eax
804840d: c9 leave
804840e: c3 ret

4 of 14 Continued . . .

(Question 2 cont’d)

A) [6 pts] Consider the function el():

When the following values are in %edx, fill in the corresponding values of %eax when %eip is pointing to
0x80483ce:

%edx %eax
-251 0

-100 151

-1 250

What does main() print for answer1 when function el() returns?

answer1 = 251

B) [6 pts] Consider the function psy():

1) What value (signed base 10) is %edx being compared to when %eip points to 0x80483e7? -7

2) How many times does the shift at the instruction at address 0x80483ec occur? 3

3) What does main() print for answer2 when function psy() returns?

answer2 = 3

C) [8 pts] Consider the function congroo():

1) What value (signed base 10) will be stored in %ecx after
the instruction at 0x80483fe is executed? 8

2) What value (signed base 10) will be stored in %edx after
the instruction at 0x8048401 is executed? 103

3) What does main() print for answer3 when function congroo() returns?

answer3 = 7

5 of 14

Problem 3: Bitey is a good snake name. (6 pts)

You are working on a machine with 16 bit integers. The variables x, p and q are signed integers in two’s
complement. Match the expressions on the left to the code snippets on the right (by writing the letter in the
blank space). If an expression on the left does NOT have a corresponding code snippet, then leave the blank
empty.

1) 19 ∗ x F

2) x > 0 C

3) Round x down to a multiple of 32. D

4) Absolute value of x. A

5) p⊕ q (xor). B

A) x ∗ ((x >> 15)|1)

B) (p&(∼ q))|((∼ p)&q)

C) (x& MIN INT) == 0

D) (x >> 5) << 5

E) (x&(((unsigned)− 1) >> 11))

F) (x << 4) + (x << 1) + x

6 of 14

Problem 4: Cache (13 pts)

Given an 32-bit Linux system, consider a 2-way associative cache of size 64 bytes with 16 bytes per block.
The replacement policy that the cache adopt is LRU (Least Recent Used).

A) [2 pts] Warm up:

1) How many sets are there in the cache? 2

2) How many cache lines are there in each set? 2

B) [6 pts] Assume the following:
• one access to memory costs 100 ns
• one access to cache costs 1 ns
• ignore other time costs that might occur (eviction, store to cache, etc.)
• If cache is in use, we will always access the cache first (Thus, in this case a cache miss is 101ns.)

Given an integer array:

int Arr[6][4];

The Arr array starts at address 0x00000000.

If we were to access the following elements in the array one by one:

1) Fill in the blank slots with H or M, meaning cache hit and cache miss respectively.

Access Cache Result

Arr[0][0] M

Arr[0][2] H

Arr[0][3] H

Arr[1][1] M

Arr[1][3] H

Arr[2][1] M

2) What is the time cost if cache is NOT used? 600ns

3) What is the time cost if cache is used? 306ns

7 of 14 Continued . . .

(Question 4 cont’d)

C) [5 pts] If we were to access the array using the following program:

int i, j;
for (i = 0; i < 4; i++) {

for (j = 0; j < 6; j++) {
Arr[j][i]++;

}
}

1) What is the time cost if cache is NOT used? 4800ns

2) What is the time cost if cache is used? 2448ns

8 of 14

Problem 5: Float On (9 pts)

Consider a 6-bit floating point representation based on the IEEE standard. This representation has no sign
bit, it can only represent positive numbers.

• There are k = 3 exponent bits.
• There are n = 3 fraction bits.

Recall that numeric values are encoded as a value of the form V = M x 2E , where E is the exponent after
biasing, and M is the significand value. The fraction bits encode the significand value M using either a
denormalized (exponent field 0) or a normalized representation (exponent field nonzero). The exponent E
is given by E = 1− Bias for denormalized values and E = e− Bias for normalized values, where e is the
value of the exponent field exp interpreted as an unsigned number.

Given the table below, please show the corresponding floating point representation based on the modified 6-
bit IEEE format described above for each decimal value. In addition, you should provide the rounded value
of the encoded floating point number. To get full credit, you must give these as whole numbers (e.g.,17) or
as fractions in reduced form (e.g.,34). Any rounding of the significand is based on round-to-even, which
rounds an unrepresentable value that lies halfway between two representable values to the nearest even
representable value.

Write the floating point encoding of the following values and their rounded values. Remember that floats
round-to-even.

Value Floating Point Bits Rounded Value

37/32 011 001 9/8

7/2 100 110 7/2

5/32 000 101 5/32

17/2 110 000 8

15213 111 000 infinity

9 of 14

Problem 6: Stack Discipline (15 pts)

Consider the following C code and its corresponding 32-bit x86 machine code.

struct node_t {
int data;
struct node_t *next;

};

int fun (struct node_t *node) {
if (!node) return 0;
else return node->data + fun(node->next);

}

080483f4 <fun>:
80483f4: 55 push %ebp
80483f5: 89 e5 mov %esp,%ebp
80483f7: 53 push %ebx
80483f8: 83 ec 04 sub $0x4,%esp
80483fb: 83 7d 08 00 cmpl $0x0,0x8(%ebp)
80483ff: 75 07 jne 8048408 <fun+0x14>
8048401: b8 00 00 00 00 mov $0x0,%eax
8048406: eb 16 jmp 804841e <fun+0x2a>
8048408: 8b 45 08 mov 0x8(%ebp),%eax
804840b: 8b 18 mov (%eax),%ebx
804840d: 8b 45 08 mov 0x8(%ebp),%eax
8048410: 8b 40 04 mov 0x4(%eax),%eax
8048413: 89 04 24 mov %eax,(%esp)
8048416: e8 d9 ff ff ff call 80483f4 <fun>
804841b: 8d 04 03 lea (%ebx,%eax,1),%eax
804841e: 83 c4 04 add $0x4,%esp
8048421: 5b pop %ebx
8048422: 5d pop %ebp
8048423: c3 ret

The program makes the following procedure call fun(0x0804a008). Prior to the call (i.e., immediately
BEFORE the execution of the call instruction) the %esp=0xffffd400, %ebp=0xffffd428, and the
return address in the caller is 0x804847c.

You are also given the following values in memory:

Address Value
0x0804a008 0x0000000f
0x0804a00c 0x0804a010
0x0804a010 0x000000d5
0x0804a014 0x00000000

10 of 14 Continued . . .

(Question 6 cont’d)

The call fun(0x0804a008)will result in the following function invocations: fun(0x0804a008), fun(0x0804a010),
and fun(0). Fill in the stack diagram with the values that would be present immediately BEFORE the call
instruction that invokes fun(0) (i.e., AFTER the execution of the mov %eax,(%esp) instruction).

• Use the actual values whenever possible, rather than variable/register names.
• For a register whose value is unknown, simply note the register name.
• Cross out each empty box for which there is insufficient information to fill in its value.

Stack Address Value

0xffffd404 //////////

0xffffd400 0x0804a008

0xffffd3fc 0x0804847c

0xffffd3f8 0xffffd428

0xffffd3f4 old %ebx or %ebx

0xffffd3f0 0x0804a010

0xffffd3ec 0x0804841b

0xffffd3e8 0xffffd3f8

0xffffd3e4 0x0000000f or 15

0xffffd3e0 0x00000000 or 0

0xffffd3dc //////////

11 of 14

Problem 7: Structures and Alignment (23 pts)
Consider the following code defining a struct, for use on a 64-bit Linux system.

struct stats {
int num_views;
short sum;

};

struct system_f {
char a;
int *b;
int c[3];
long d;
struct stats e;
short f;

};

A) [7 pts] Show how a struct system_f would be laid out in memory, given x86-64 alignment
requirements in Linux. Fill in the block diagram by marking each box with the name of the structure
member, and mark any wasted space with an X. Clearly mark the end of the struct.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| a | X | X | X | X | X | X | X | b | b | b | b | b | b | b | b |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| c | c | c | c | c | c | c | c | c | c | c | c | X | X | X | X |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| d | d | d | d | d | d | d | d | e | e | e | e | e | e | e | e |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| f | f | X | X | X | X | X | X | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

12 of 14 Continued . . .

(Question 7 cont’d)

Suppose that in order to stop Dr. Grave O’Dangeron, this struct needs to be used on an embedded system
where memory is scarce.

B) [5 pts] Give an alternative definition of struct system_f that saves as much space as possible. Feel
free to use the box diagram below as scratch space, but please remember to populate the struct to receive
full credit.

struct system_f {

One possibility:

int *b;
long d;
int c[3];
strruct stats e;
short f;
char a;

};

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| b | b | b | b | b | b | b | b | d | d | d | d | d | d | d | d |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| c | c | c | c | c | c | c | c | c | c | c | c | e | e | e | e |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| e | e | X | X | f |f | a | X | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| | | | | | | | | | | | | | | | |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

C) [1 pts] How many bytes were wasted due to alignment conventions in the first, naive definition?

17 1

D) [1 pts] How many bytes were wasted due to alignment conventions in the second, improved definition?

1 2

E) [1 pts] How would you determine how large struct system_f would be at runtime in C (including
padding requirements)? Write a simple C expression below:

sizeof(struct system f)

1Or, 19: Depending on whether the struct stats is seen as opaque
2Or, 3: Depending on whether the struct stats is seen as opaque

13 of 14 Continued . . .

(Question 7 cont’d)

F) [8 pts] Unfortunately, Dr. Grave O’Dangeron deleted your C file with handy functions that retrieved data
from pointers to struct system_f, and all you have left is a series of disassembled functions. Drat!

Write in the assembly functions for the first, naive definition of struct system_f that correspond to
the C functions in the blanks below (don’t worry about the types). Fill in the blanks on the left with the
corresponding assembly addresses (i.e. a1-a7) on the right.

C Code x86-64 Assembly

a2 (struct system_f *s) {
return s->a;

}

a6 (struct system_f *s) {
return s->c[2];

}

a1 (struct system_f *s) {
return s->e.sum;

}

a7 (struct system_f *s) {
return (*s).f;

}

a4 (struct system_f *s) {
return *(s->b);

}

00000000004004d0 <a1>:
4004d0: movzwl 0x2c(%rdi),%eax
4004d4: retq

00000000004004e0 <a2>:
4004e0: movzbl (%rdi),%eax
4004e3: retq

00000000004004f0 <a3>:
4004f0: mov 0x8(%rdi),%rax
4004f4: retq

0000000000400500 <a4>:
400500: mov 0x8(%rdi),%rax
400504: mov (%rax),%eax
400506: retq

0000000000400510 <a5>:
400510: lea 0x10(%rdi),%rax
400514: retq

0000000000400520 <a6>:
400520: mov 0x18(%rdi),%eax
400523: retq

0000000000400530 <a7>:
400530: movzwl 0x30(%rdi),%eax
400534: retq

14 of 14

