
CS213,Spring2003
LabAssignmentL3: TheBuffer Bomb

Assigned:Feb. 4, Due: Wednesday, Feb. 19,11:59PM

Jiin JooOng(jiinjoo@andrew.cmu.edu) is theleadpersonfor thisassignment.

Introduction

This assignmenthelpsyou develop a detailedunderstandingof the calling stackorganizationon an IA32
processor. It involvesapplyinga seriesof buffer overflowattacksonanexecutablefile bufbomb.

Note: In this lab, you will gain firsthandexperiencewith oneof the methodscommonlyusedto exploit
securityweaknessesin operatingsystemsandnetwork servers. Our purposeis to helpyou learnaboutthe
runtimeoperationof programsandto understandthenatureof this form of securityweaknessso thatyou
canavoid it whenyouwrite systemcode.Wedonotcondonetheuseof theseor any otherform of attackto
gainunauthorizedaccessto any systemresources.Therearecriminal statutesgoverningsuchactivities.

Logistics

This is anindividual project. Theonly “hand-in” will beanautomatedloggingof your successfulattacks.
Any clarificationsandrevisionsto theassignmentwill bepostedon thecourseWebpage.

Youshoulddo theassignmenton thefishmachines.

Hand Out Instructions

In thedirectory

/afs/cs.cmu.edu/academic/class/15213-s03/labs/L3

youwill seethefiles for two programs:

BUFBOMB: Thecodeyouwill attack.

SENDSTRING: A utility to helpconvert betweenstringformats.

1

All of theseprogramsarecompiledto runon theFishmachines.

In the following instructions,we will assumethat you have copiedthe two programsto a protectedlocal
directory, andthatyouareexecutingthemin thatlocal directory.

Making a Cookie

You needto sende-mailagainto your friendly bombguy cookie@bluegill.cmcl.cs.cmu.edu with thesub-
jectcookie request spring03 yourAndrewID@andrew. Youmustuseyourandrew e-mailaccountbecause
we’re generatingit basedon your Andrew ID. Any othere-mailaccountswill not beaccepted.A cookieis
astringof eighthexadecimaldigits thatis (with highprobability)uniqueto yourAndrew ID.

In four of your five buffer attacks,your objective will be to make your cookieshow up in placeswhereit
ordinarilywouldnot.

The BUFBOMB Program

TheBUFBOMB programreadsastringfrom standardinputwith a functiongetbuf having thefollowing C
code:

1 int getbuf()
2 {
3 char buf[12];
4 Gets(buf);
5 return 1;
6 }

ThefunctionGets is similar to thestandardlibrary functiongets—it readsa string from standardinput
(terminatedby ‘\n’ or end-of-file)andstoresit (alongwith a null terminator)at thespecifieddestination.
In this code,thedestinationis anarraybuf having sufficient spacefor 12 characters.

NeitherGets norgets hasany wayto determinewhetherthereis enoughspaceat thedestinationto store
theentirestring. Instead,they simplycopy theentirestring,possiblyoverrunningtheboundsof thestorage
allocatedat thedestination.

If thestringtypedby theuserto getbuf is no morethan11 characterslong, it is clearthatgetbuf will
return1, asshown by thefollowing executionexample:

unix> ./bufbomb
Type string: howdy doody
Dud: getbuf returned 0x1

Typically anerroroccursif we typea longerstring:

unix> ./bufbomb

2

Type string: This string is too long
Ouch!: You caused a segmentation fault!

As theerrormessageindicates,overrunningthebuffer typically causestheprogramstateto be corrupted,
leadingto amemoryaccesserror. Your taskis to bemorecleverwith thestringsyoufeedBUFBOMB sothat
it doesmoreinterestingthings.Thesearecalledexploit strings.

BUFBOMB takesseveraldifferentcommandline arguments:

-t AndrewID: Operatethebombfor the indicatedAndrew ID. You shouldalwaysprovide this argument
for severalreasons:

� It is requiredto log yoursuccessfulattacks.
� BUFBOMB determinesthecookieyouwill beusingbasedonyour Andrew ID, justasthescript

thatsentyour thecookie.
� We have built featuresinto BUFBOMB sothatsomeof thekey stackaddressesyou will needto

usedependon yourcookie.

-h: Print list of possiblecommandline arguments

-n: Operatein “Nitro” mode,asis usedin Level 4 below.

Yourexploit stringswill typically containbytevaluesthatdonotcorrespondto theASCII valuesfor printing
characters.The programSENDSTRING canhelp you generatetheseraw strings. It takesas input a hex-
formattedstring. In this format,eachbytevalueis representedby two hex digits. For example,thestring
“012345” couldbeenteredin hex formatas“30 31 32 33 34 35.” (Recallthat theASCII codefor
decimaldigit � is 0x3 � .) Non-hex digit charactersareignored,includingtheblanksin theexampleshown.

If you generatea hex-formattedexploit string in thefile exploit.txt, you canapply the raw string to
BUFBOMB in severaldifferentways:

1. You cansetup aseriesof pipesto passthestringthroughSENDSTRING.

unix> cat exploit.txt | ./sendstring | ./bufbomb -t bovik

2. You canstoretheraw stringin afile anduseI/O redirectionto supplyit to BUFBOMB:

unix> sendstring < exploit.txt > exploit.raw
unix> bufbomb -t bovik < exploit.raw

This approachcanalsobeusedwhenrunningBUFBOMB from within GDB:

unix> gdb bufbomb
(gdb) run -t bovik < exploit.raw

3

Oneimportantpoint: your exploit string mustnot containbyte value0x0A at any intermediateposition,
sincethis is the ASCII codefor newline (‘\n’). WhenGets encountersthis byte, it will assumeyou
intendedto terminatethestring.SENDSTRING will warnyou if it encountersthisbytevalue.

Whenyou correctlysolve oneof thelevels,BUFBOMB will automaticallysendanemailnotificationto our
gradingserver. Theserver will testyour exploit string to make sureit really works,andit will updatethe
lab webpageindicatingthatyou (listedby cookie)hascompletedthis level.

Unlike thebomblab,thereis nopenaltyfor makingmistakesin this lab. Feelfreeto fire awayat BUFBOMB

with any stringyou like.

Level 0: Candle (10 pts)

Thefunctiongetbuf is calledwithin BUFBOMB by a functiontest having thefollowing C code:

1 void test()
2 {
3 int val;
4 volatile int local = 0xdeadbeef;
5 val = getbuf();
6 /* Check for corrupted stack */
7 if (local != 0xdeadbeef) {
8 printf("Sabotaged!: the stack has been corrupted\n");
9 }

10 else if (val == cookie) {
11 printf("Boom!: getbuf returned 0x%x\n", val);
12 validate(3);
13 }
14 else {
15 printf("Dud: getbuf returned 0x%x\n", val);
16 }
17 }

Whengetbuf executesits returnstatement(line 5 of getbuf), theprogramordinarily resumesexecution
within functiontest (at line 7 of this function). Within the file bufbomb, thereis a functionsmoke
having thefollowing C code:

void smoke()
{

printf("Smoke!: You called smoke()\n");
validate(0);
exit(0);

}

Your taskis to get BUFBOMB to executethecodefor smoke whengetbuf executesits returnstatement,
ratherthanreturningto test. You cando this by supplyingan exploit string that overwritesthe stored

4

returnpointerin thestackframefor getbuf with theaddressof thefirst instructionin smoke. Notethat
your exploit stringmayalsocorruptotherpartsof thestackstate,but this will not causea problem,since
smoke causestheprogramto exit directly.

Some Advice:

� All theinformationyou needto deviseyour exploit stringfor this level canbedeterminedby exam-
ining adiassembledversionof BUFBOMB.

� Be carefulaboutbyteordering.

� Youmightwantto useGDB to steptheprogramthroughthelastfew instructionsof getbuf to make
sureit is doingtheright thing.

Level 1: Sparkler (20 pts)

Within thefile bufbomb thereis alsoa functionfizz having thefollowing C code:

void fizz(int val)
{

if (val == cookie) {
printf("Fizz!: You called fizz(0x%x)\n", val);
validate(1);

} else
printf("Misfire: You called fizz(0x%x)\n", val);

exit(0);
}

Similar to Level 0, your task is to get BUFBOMB to executethe codefor fizz ratherthanreturningto
test. In this case,however, you mustmake it appearto fizz asif you have passedyour cookieasits
argument.Youcando this by encodingyour cookiein theappropropriateplacewithin your exploit string.

Some Advice:

� Note that theprogramwon’t really call fizz—it will simply executeits code. This hasimportant
implicationsfor whereon thestackyouwantto placeyourcookie.

Level 2: Firecracker (30 pts)

A muchmoresophisticatedform of buffer attackinvolvessupplyinga string thatencodesactualmachine
instructions.Theexploit stringthenoverwritesthereturnpointerwith thestartingaddressof theseinstruc-
tions. Whenthecalling function(in this casegetbuf) executesits ret instruction,theprogramwill start
executingtheinstructionson thestackratherthanreturning.With this form of attack,you cangetthepro-
gramto do almostanything. Thecodeyouplaceon thestackis calledtheexploit code.This styleof attack

5

is tricky, though,becauseyoumustgetmachinecodeontothestackandsetthereturnpointerto thestartof
this code.

Within thefile bufbomb thereis a functionbang having thefollowing C code:

int global_value = 0;

void bang(int val)
{

if (global_value == cookie) {
printf("Bang!: You set global_value to 0x%x\n", global_value);
validate(2);

} else
printf("Misfire: global_value = 0x%x\n", global_value);

exit(0);
}

Similar to Levels 0 and1, your taskis to get BUFBOMB to executethecodefor bang ratherthanreturn-
ing to test. Beforethis, however, you mustsetglobal variableglobal_value to your cookie. Your
exploit codeshouldsetglobal_value, pushtheaddressof bang on thestack,andthenexecutearet
instructionto causea jumpto thecodefor bang.

Some Advice:

� You can use GDB to get the information you needto constructyour exploit string. Set a break-
point within getbuf and run to this breakpoint. Determineparameterssuchas the addressof
global_value andthelocationof thebuffer.

� Determiningthebyteencodingof instructionsequencesby handis tediousandproneto errors.You
canlet toolsdo all of thework by writing anassemblycodefile containingtheinstructionsanddata
you want to put on thestack. Assemblethis file with GCC anddisassembleit with OBJDUMP. You
shouldbeableto get theexactbytesequencethatyou will typeat theprompt. (A brief exampleof
how to do this is includedat theendof thiswriteup.)

� Keepin mindthatyourexploit stringdependsonyourmachine,yourcompiler, andevenyourcookie.
Do all of yourwork onaFishmachine,andmakesureyou includeyourAndrew ID on thecommand
line to BUFBOMB.

� Our solutionrequires16 bytesof exploit code.Fortunately, thereis sufficient spaceon thestack,be-
causewecanoverwritethestoredvalueof %ebp. Thisstackcorruptionwill not causeany problems,
sincebang causestheprogramto exit directly.

� Watch your useof addressmodeswhen writing assemblycode. Note that movl $0x4, %eax
movesthe value0x00000004 into register%eax; whereasmovl 0x4, %eax movesthe value
at memorylocation0x00000004 into %eax. Sincethatmemorylocationis usuallyundefined,the
secondinstructionwill causeasegfault!

6

� Do not attemptto usea jmp instructionto jump to the codefor bang. This instructionusesPC-
relative addressing,which is very tricky to setup correctly. Instead,pushanaddresson thestackand
usetheret instruction.Furthermore,donotusethecall instructionto jumpto thecodefor bang.

Level 3: Dynamite (40 pts)

Our precedingattackshave all causedthe programto jump to the codefor someother function, which
thencausestheprogramto exit. As a result,it wasacceptableto useexploit stringsthatcorruptthestack,
overwriting thesavedvalueof register%ebp andthereturnpointer.

The mostsophisticatedform of buffer overflow attackcausesthe programto executesomeexploit code
thatpatchesup thestackandmakestheprogramreturnto theoriginal calling function(test in this case).
Thecalling functionis oblivious to theattack.This styleof attackis tricky, though,sinceyou must:1) get
machinecodeontothestack,2) setthereturnpointerto thestartof this code,and3) undothecorruptions
madeto thestackstate.

Your job for this level is to supplyanexploit string thatwill causegetbuf to returnyour cookiebackto
test, ratherthanthe value1. You canseein the codefor test that this will causethe programto go
“Boom!.” Your exploit codeshouldsetyour cookieasthe returnvalue,restoreany corruptedstate,push
thecorrectreturnlocationon thestack,andexecutearet instructionto really returnto test.

Some Advice:

� In orderto overwritethereturnpointer, youmustalsooverwritethesavedvalueof %ebp. However, it
is importantthatthis valueis correctlyrestoredbeforeyou returnto test. You cando this by either
1) makingsurethat your exploit string containsthe correctvalueof the saved%ebp in the correct
position,so that it never getscorrupted,or 2) restorethecorrectvalueaspartof your exploit code.
You’ll seethatthecodefor test hassomeexplicit teststo checkfor acorruptedstack.

� You canuseGDB to get the informationyou needto constructyour exploit string. Seta breakpoint
within getbuf andrun to this breakpoint.Determineparameterssuchasthesaved returnaddress
andthesavedvalueof %ebp.

� Again, let toolssuchasGCC andOBJDUMP do all of thework of generatinga byteencodingof the
instructions.

� Keepin mindthatyourexploit stringdependsonyourmachine,yourcompiler, andevenyourcookie.
Do all of your work on a Fish machine,andmake sureyou includethe properAndrew ID on the
commandline to BUFBOMB.

Onceyou completethis level, pauseto reflecton what you have accomplished.You causeda programto
executemachinecodeof yourown design.Youhave donesoin asufficiently stealthyway thattheprogram
did not realizethatanythingwasamiss.

7

Level 4: Nitroglycerin (10 pts)

If you have completedthefirst four levels,you have earned100points. You have masteredtheprinciples
of theruntimestackoperation,andyou have gainedfirsthandexperiencewith buffer overflow attacks.We
considerthisasatisfactorymasteryof thematerial.You arewelcometo stopright now.

Thenext level is for thosewho want to pushthemselvesbeyond our baselineexpectationsfor thecourse,
andwhowantto faceachallengein designingbuffer overflow attacksthatarisesin reallife. Thispartof the
assignmentonly counts10points,eventhoughit requiresa fair amountof work to do,sodon’t do it just for
thepoints.

Fromonerun to another, especiallyby differentusers,theexactstackpositionsusedby a givenprocedure
will vary. Onereasonfor this variationis that the valuesof all environmentvariablesareplacednearthe
baseof thestackwhena programstartsexecuting. Environmentvariablesarestoredasstrings,requiring
differentamountsof storagedependingon their values. Thus, the stackspaceallocatedfor a given user
dependson the settingsof his or her environmentvariables. Stackpositionsalsodiffer whenrunninga
programunderGDB, sinceGDB usesstackspacefor someof its own state.

In thecodethatcallsgetbuf, wehave incorporatedfeaturesthatstabilizethestack,sothatthepositionof
getbuf’s stackframewill beconsistentbetweenruns. This madeit possiblefor you to write an exploit
string knowing the exact startingaddressof buf andthe exact saved valueof %ebp. If you tried to use
suchanexploit on a normalprogram,you would find that it workssometimes,but it causessegmentation
faultsat othertimes. Hencethename“dynamite”—anexplosive developedby Alfred Nobel thatcontains
stabilizingelementsto make it lessproneto unexpectedexplosions.

For this level, we have gonethe oppositedirection,makingthe stackpositionseven lessstablethanthey
normallyare.Hencethename“nitroglycerin”—anexplosive thatis notoriouslyunstable.

Whenyourun BUFBOMB with thecommandline flag“-n,” it will run in “Nitro” mode.Ratherthancalling
thefunctiongetbuf, theprogramcallsaslightly differentfunctiongetbufn:

int getbufn()
{

char buf[512];
Gets(buf);
return 1;

}

This function is similar to getbuf, exceptthat it hasa buffer of 512characters.You will needthis addi-
tional spaceto createa reliableexploit. Thecodethat callsgetbufn first allocatesa randomamountof
storageon the stack(usinglibrary functionalloca) that rangesbetween0 and127 bytes. Thus,if you
were to samplethe valueof %ebp during two successive executionsof getbufn, you would find they
differ by asmuchas

�������
.

In addition,when run in Nitro mode,BUFBOMB requiresyou to supplyyour string 5 times, and it will
executegetbufn 5 times,eachwith a differentstackoffset. Your exploit stringmustmake it returnyour
cookieeachof thesetimes.

Your taskis identicalto thetaskfor theDynamitelevel. Onceagain,your job for this level is to supplyan

8

exploit stringthatwill causegetbufn to returnyour cookiebackto test,ratherthanthevalue1. You can
seein the codefor testthat this will causethe programto go “KABOOM!.” Your exploit codeshouldset
your cookieasthe returnvalue,restoreany corruptedstate,pushthe correctreturnlocationon the stack,
andexecutearet instructionto really returnto testn.

Some Advice:

� You canusetheprogramSENDSTRING to sendmultiple copiesof your exploit string. If you have a
singlecopy in thefile exploit.txt, thenyoucanusethefollowing command:

unix> cat exploit.txt | ./sendstring -n 5 | ./bufbomb -n -t bovik

Youmustusethesamestringfor all 5 executionsof getbufn. Otherwiseit will fail thetestingcode
usedby ourgradingserver.

� Thetrick is to make useof thenop instruction. It is encodedwith a singlebyte (code0x90). You
canplacea long sequenceof theseat thebeginningof your exploit codesothatyour codewill work
correctlyif theinitial jump landsanywherewithin thesequence.

� You will needto restorethe saved valueof %ebp in a way that is insensitive to variationsin stack
positions.

Logistical Notes

Handin occursautomaticallywheneveryoucorrectlysolvealevel. Theprogramsendsemailto ourgrading
server containingyour Andrew ID (besureto setthe “-t” commandline flag properly)andyour exploit
string. You will be informedof this by BUFBOMB. Uponreceiving theemail,theserver will validateyour
string andupdatethe lab web page. You shouldcheckthis pagea few minutesafter your submissionto
make sureyourstringhasbeenvalidated.[If you really solvedthelevel, yourstringshouldbevalid.]

Notethateachlevel is gradedindividually. You do not needto do themin thespecifiedorder, but you will
getcreditonly for thelevelsfor which theserver receivesa valid message.

Have fun!

Generating Byte Codes

UsingGCC asanassemblerandOBJDUMP asadisassemblermakesit convenientto generatethebytecodes
for instructionsequences.For example,supposewe write a file example.s containingthe following
assemblycode:

Example of hand-generated assembly code
pushl $0x89ABCDEF # Push value onto stack
addl $17,%eax # Add 17 to %eax
.align 4 # Following will be aligned on multiple of 4

9

.long 0xFEDCBA98 # A 4-byte constant

.long 0x00000000 # Padding

The codecan containa mixture of instructionsand data. Anything to the right of a ‘#’ characteris a
comment.Wehaveaddedanextrawordof all 0sto work aroundashortcomingin OBJDUMP to bedescribed
shortly.

Wecannow assembleanddisassemblethisfile:

unix> gcc -c example.s
unix> objdump -d example.o > example.d

Thegeneratedfile example.d containsthefollowing lines

0: 68 ef cd ab 89 push $0x89abcdef
5: 83 c0 11 add $0x11,%eax
8: 98 cwtl Objdump tries to interpret

9: ba dc fe 00 00 mov $0xfedc,%edx these as instructions

Eachline shows asingleinstruction.Thenumberon theleft indicatesthestartingaddress(startingwith 0),
while thehex digits afterthe‘:’ characterindicatethebytecodesfor theinstruction.Thus,we canseethat
theinstructionpushl $0x89ABCDEF hashex-formattedbytecode68 ef cd ab 89.

Startingat address8, thedisassemblergetsconfused.It tries to interpretthebytesin thefile example.o
asinstructions,but thesebytesactuallycorrespondto data. Note,however, that if we readoff the4 bytes
startingat address8 we get: 98 ba dc fe. This is a byte-reversedversionof the dataword 0xFED-
CBA98. This byte reversalrepresentsthe properway to supplythebytesasa string, sincea little endian
machinelists theleastsignificantbytefirst. Notealsothatit only generatedtwo of thefour bytesat theend
with value00. Hadwenotaddedthispadding,OBJDUMP getsevenmoreconfusedanddoesnotemitall of
thebyteswe want.

Finally, we canreadoff thebytesequencefor ourcode(omitting thefinal 0’s) as:

68 ef cd ab 89 83 c0 11 98 ba dc fe

10

