
Time Measurement
Oct. 24, 2002

Time Measurement
Oct. 24, 2002

TopicsTopics
n Time scales

n Interval counting

n Cycle counters

n K-best measurement scheme

class18.ppt

15-213
“The course that gives CMU its Zip!”

– 2 – 15-213, F’02

Computer Time ScalesComputer Time Scales

Two Fundamental Time ScalesTwo Fundamental Time Scales
n Processor: ~10–9 sec.

n External events: ~10–2 sec.
lKeyboard input
lDisk seek
lScreen refresh

ImplicationImplication
n Can execute many

instructions while waiting
for external event to o ccur

n Can alternate among
processes without any one
noticing

Time Scale (1 Ghz Machine)

1.E-09 1.E-06 1.E-03 1.E+00Time (seconds)

1 ns 1 µs 1 ms 1 s

Integer Add
FP Multiply

FP Divide
Keystroke
Interrupt
Handler

Disk Access
Screen Refresh
Keystroke

Microscopic Macroscopic

– 3 – 15-213, F’02

Measurement ChallengeMeasurement Challenge

How Much Time Does Program X Require?How Much Time Does Program X Require?
n CPU time

l How many total seconds are used when exec uting X?
l Measure used for most a pplications
l Small dependence on other system acti vities

n Actual (“Wall”) Time
l How many seconds el apse between the start a nd the

completion of X?
l Depends on system load, I/O times, etc.

Confounding FactorsConfounding Factors
n How does time get measured?
n Many processes share computing resources

l Transient effects when switching from one process to another
l Suddenly, the effects of alternating among p rocesses become

noticeable

– 4 – 15-213, F’02

“Time” on a Computer System“Time” on a Computer System

real (wall clock) time

= user time (time executing instructions in the user process)

+ = real (wall clock) ti me

We will use the word “tim e” to refer to user time .

= system time (time executing instructions in kernel on behalf
of user process)

+

= some other user’s time (time executing instructions in
different user’s process)

cumulative user tim e

– 5 – 15-213, F’02

Activity Periods: Light LoadActivity Periods: Light Load

n Most of the time spent
executing one proce ss

n Periodic interrupts every
10ms
l Interval timer
l Keep system from

executing one process to
exclusion of others

n Other interrupts
l Due to I/O activity

n Inactivity periods
l System time spent

processing interrupts
l ~250,000 clock cycles

Activity Periods, Load = 1

0 10 20 30 40 50 60 70 80

1

Time (ms)

Active

Inactive

– 6 – 15-213, F’02

Activity Periods: Heavy LoadActivity Periods: Heavy Load

n Sharing processor with one other active proc ess

n From perspective of this process, system ap pears to be
“inactive” for ~50% of the time
l Other process is exec uting

Activity Periods, Load = 2

0 10 20 30 40 50 60 70 80

1

Time (ms)

Active

Inactive

– 7 – 15-213, F’02

Interval CountingInterval Counting

OS Measures Runtimes Using Interval TimerOS Measures Runtimes Using Interval Timer
n Maintain 2 counts per process

l User time
l System time

n Each time get timer interrupt, increment counter for
executing process
l User time if running in us er mode
l System time if running in kernel mode

– 8 – 15-213, F’02

Interval Counting ExampleInterval Counting Example

Au Au Au As Bu Bs Bu Bu Bu Bu As Au Au Au Au Au Bs Bu Bu Bs Au Au Au As As

A 110u + 40s

B 70u + 30s

(a) Interval Timings

B BAA A

(b) Actual Times

B

AA

B

A 120.0u + 33.3s

B 73.3u + 23.3s

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

A

Au Au Au As Bu Bs Bu Bu Bu Bu As Au Au Au Au Au Bs Bu Bu Bs Au Au Au As As

A 110u + 40s

B 70u + 30s

(a) Interval Timings

B BAA A

Au Au Au As Bu Bs Bu Bu Bu Bu As Au Au Au Au Au Bs Bu Bu Bs Au Au Au As As

A 110u + 40s

B 70u + 30s

(a) Interval Timings

B BAA A

(b) Actual Times

B

AA

B

A 120.0u + 33.3s

B 73.3u + 23.3s

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

A

(b) Actual Times

B

AA

B

A 120.0u + 33.3s

B 73.3u + 23.3s

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

A

– 9 – 15-213, F’02

Unix time CommandUnix time Command

n 0.82 seconds user time
l 82 timer intervals

n 0.30 seconds system time
l 30 timer intervals

n 1.32 seconds wall time

n 84.8% of total was used running these processes
l (.82+0.3)/1.32 = .848

time make osevent
gcc -O2 -Wall -g -march=i486 -c clock.c
gcc -O2 -Wall -g -march=i486 -c options.c
gcc -O2 -Wall -g -march=i486 -c load.c
gcc -O2 -Wall -g -march=i486 -o osevent osevent.c . . .
0.820u 0.300s 0:01.32 84.8% 0+0k 0+0io 4049pf+0w

– 10 – 15-213, F’02

Accuracy of Interval CountingAccuracy of Interval Counting

Worst Case AnalysisWorst Case Analysis
n Timer Interval = δ
n Single process segment measur ement can be off by ±δ
n No bound on error for multiple segments

l Could consistently un derestimate, or consis tently overestimate

0 10 20 30 40 50 60 70 80

A

A

Minimum

Maximum

0 10 20 30 40 50 60 70 80

A

A

Minimum

Maximum

• Computed time = 70m s

• Min Actual = 60 + ε

• Max Actual = 80 – ε

– 11 – 15-213, F’02

Accuracy of Int. Cntg. (cont.)Accuracy of Int. Cntg. (cont.)

Average Case AnalysisAverage Case Analysis
n Over/underestimates tend to balance out

n As long as total run time is sufficiently large
l Min run time ~1 second
l 100 timer intervals

n Consistently miss 4% overhead due to timer interrupts

0 10 20 30 40 50 60 70 80

A

A

Minimum

Maximum

0 10 20 30 40 50 60 70 80

A

A

Minimum

Maximum

• Computed time = 70m s

• Min Actual = 60 + ε

• Max Actual = 80 – ε

– 12 – 15-213, F’02

Cycle CountersCycle Counters

n Most modern systems have built in registers that are
incremented every clock cy cle
l Very fine grained
l Maintained as part of proc ess state

» In Linux, counts el apsed global time

n Special assembly code instruc tion to access

n On (recent model) Intel machines:
l 64 bit counter.
l RDTSC instruction sets %edx to high order 32-bits, %eax to low

order 32-bits

– 13 – 15-213, F’02

Cycle Counter PeriodCycle Counter Period

Wrap Around Times for 550 MHz machineWrap Around Times for 550 MHz machine
n Low order 32 bits wrap around every 2 32 / (550 * 106) = 7.8

seconds

n High order 64 bits wrap around every 2 64 / (550 * 106) =
33539534679 seconds
l 1065 years

For 2 GHz machineFor 2 GHz machine
n Low order 32-bits every 2.1 seconds

n High order 64 bits every 293 y ears

– 14 – 15-213, F’02

Measuring with Cycle CounterMeasuring with Cycle Counter
IdeaIdea

n Get current value of cycle counter
l store as pair of unsigned’s cyc_hi and cyc_lo

n Compute something

n Get new value of cycle counter

n Perform double precision subtraction to get elapsed c ycles

/* Keep track of most recent reading of cycle counter */
static unsigned cyc_hi = 0;
static unsigned cyc_lo = 0;

void start_counter()
{
 /* Get current value of cycle counter */
 access_counter(&cyc_hi, &cyc_lo);
}

– 15 – 15-213, F’02

Accessing the Cycle Cntr .Accessing the Cycle Cntr .
n GCC allows inline assembly code with mechanism for

matching registers with program variables

n Code only works on x86 machine compiling with GCC

n Emit assembly with rdtsc and two movl instructions

void access_counter(unsigned *hi, unsigned *lo)
{
 /* Get cycle counter */
 asm("rdtsc; movl %%edx,%0; movl %%eax,%1"
 : "=r" (*hi), "=r" (*lo)
 : /* No input */
 : "%edx", "%eax");
}

– 16 – 15-213, F’02

Closer Look at Extended ASMCloser Look at Extended ASM

Instruction StringInstruction String
n Series of assembly commands

l Separated by “ ;” or “ \n”
l Use “ %%” where normally would use “%”

asm(ÒInstruction String"
 : Output List
 : Input List
 : Clobbers List);
}

void access_counter
 (unsigned *hi, unsigned *lo)
{
 /* Get cycle counter */
 asm("rdtsc; movl %%edx,%0; movl %%eax,%1"
 : "=r" (*hi), "=r" (*lo)
 : /* No input */
 : "%edx", "%eax");
}

– 17 – 15-213, F’02

Closer Look at Extended ASMCloser Look at Extended ASM

Output ListOutput List
n Expressions indicating destinations for values %0, %1, …, %j

l Enclosed in parenthe ses
l Must be lvalue

» Value that can appe ar on LHS of assignment

n Tag "=r" indicates that symbolic value (%0, etc.), should be
replaced by register

asm(ÒInstruction String"
 : Output List
 : Input List
 : Clobbers List);
}

void access_counter
 (unsigned *hi, unsigned *lo)
{
 /* Get cycle counter */
 asm("rdtsc; movl %%edx,%0; movl %%eax,%1"
 : "=r" (*hi), "=r" (*lo)
 : /* No input */
 : "%edx", "%eax");
}

– 18 – 15-213, F’02

Closer Look at Extended ASMCloser Look at Extended ASM

Input ListInput List
n Series of expressions indicating sour ces for values %j+1, %j+2,

…
l Enclosed in parenthe ses
l Any expression returning value

n Tag "r" indicates that symbolic value (%0, etc.) will come from
register

asm(ÒInstruction String"
 : Output List
 : Input List
 : Clobbers List);
}

void access_counter
 (unsigned *hi, unsigned *lo)
{
 /* Get cycle counter */
 asm("rdtsc; movl %%edx,%0; movl %%eax,%1"
 : "=r" (*hi), "=r" (*lo)
 : /* No input */
 : "%edx", "%eax");
}

– 19 – 15-213, F’02

Closer Look at Extended ASMCloser Look at Extended ASM

Clobbers ListClobbers List
n List of register names that get altered by assembly instruction

n Compiler will make sure doesn’t store something in one of these
registers that must be preserved acr oss asm
l Value set before & use d after

asm(ÒInstruction String"
 : Output List
 : Input List
 : Clobbers List);
}

void access_counter
 (unsigned *hi, unsigned *lo)
{
 /* Get cycle counter */
 asm("rdtsc; movl %%edx,%0; movl %%eax,%1"
 : "=r" (*hi), "=r" (*lo)
 : /* No input */
 : "%edx", "%eax");
}

– 20 – 15-213, F’02

Accessing the Cycle Cntr . (cont.)Accessing the Cycle Cntr . (cont.)

Emitted Assembly CodeEmitted Assembly Code

n Used %ecx for *hi (replacing %0)

n Used %ebx for *lo (replacing %1)

n Does not use %eax or %edx for value that must be carried
across inserted assembly c ode

movl 8(%ebp),%esi # hi
movl 12(%ebp),%edi # lo

#APP
rdtsc; movl %edx,%ecx; movl %eax,%ebx

#NO_APP
movl %ecx,(%esi) # Store high bits at *hi
movl %ebx,(%edi) # Store low bits at *lo

– 21 – 15-213, F’02

Completing MeasurementCompleting Measurement

n Get new value of cycle counter

n Perform double precision subtraction to get elapsed c ycles
n Express as double to avoid overflow problems

double get_counter()
{
 unsigned ncyc_hi, ncyc_lo
 unsigned hi, lo, borrow;
 /* Get cycle counter */
 access_counter(&ncyc_hi, &ncyc_lo);
 /* Do double precision subtraction */
 lo = ncyc_lo - cyc_lo;
 borrow = lo > ncyc_lo;
 hi = ncyc_hi - cyc_hi - borrow;
 return (double) hi * (1 << 30) * 4 + lo;
}

– 22 – 15-213, F’02

Timing With Cycle CounterTiming With Cycle Counter

Determine Clock Rate of ProcessorDetermine Clock Rate of Processor
n Count number of cycles required for some fixed number of

seconds

Time Function PTime Function P
n First attempt: Simply count cycles for one execution of P

 double tsecs;
 start_counter();
 P();
 tsecs = get_counter() / (MHZ * 1e6);

 double MHZ;
 int sleep_time = 10;
 start_counter();
 sleep(sleep_time);
 MHZ = get_counter()/(sleep_time * 1e6);

– 23 – 15-213, F’02

Measurement PitfallsMeasurement Pitfalls

OverheadOverhead
n Calling get_counter() incurs small amount of overhead

n Want to measure long enough code sequence to
compensate

Unexpected Cache EffectsUnexpected Cache Effects
n artificial hits or misses

n e.g., these measurements were taken with the Alpha cycle
counter:
foo1(array1, array2, array3); /* 68,829 cycles */

foo2(array1, array2, array3); /* 23,337 cycles */

vs.
foo2(array1, array2, array3); /* 70,513 cycles */

foo1(array1, array2, array3); /* 23,203 cycles */

– 24 – 15-213, F’02

Dealing with Overhead & Cache
Effects
Dealing with Overhead & Cache
Effects

n Always execute function once to “warm up” cache

n Keep doubling number of times execute P() until reach some
threshold
l Used CMIN = 50000

 int cnt = 1;
 double cmeas = 0;
 double cycles;
 do {
 int c = cnt;
 P(); /* Warm up cache */
 get_counter();
 while (c-- > 0)
 P();
 cmeas = get_counter();
 cycles = cmeas / cnt;
 cnt += cnt;
 } while (cmeas < CMIN); /* Make sure have enough */
 return cycles / (1e6 * MHZ);

– 25 – 15-213, F’02

Multitasking EffectsMultitasking Effects

Cycle Counter Measures Elapsed TimeCycle Counter Measures Elapsed Time
n Keeps accumulating during periods of inactivity

l System activity
l Running other processes

Key ObservationKey Observation
n Cycle counter never underes timates program run time

n Possibly overestimates by large amount

K-Best Measurement SchemeK-Best Measurement Scheme
n Perform up to N (e.g., 20) measurements of function
n See if fastest K (e.g., 3) within some relative factor ε (e.g., 0.001)

K

– 26 – 15-213, F’02

K-Best
Validation
K-Best
Validation

Very good accuracy for < 8 msVery good accuracy for < 8 ms
n Within one timer interva l

n Even when heavily l oaded

Less accurate of > 10msLess accurate of > 10ms
n Light load: ~4% error

l Interval clock interrupt
handling

n Heavy load: Very high error

Intel Pentium III, Linux

0.001

0.01

0.1

1

10

100

0 10 20 30 40 50

Expected CPU Time (ms)

M
ea

su
re

d
:E

xp
ec

te
d

 E
rr

o
r

Load 1

Load 2

Load 11

K = 3, ε = 0.001

– 27 – 15-213, F’02

Compensate
For Timer
Overhead

Compensate
For Timer
Overhead

Subtract Timer OverheadSubtract Timer Overhead
n Estimate overhead o f single

interrupt by measuring p eriods
of inactivity

n Call interval timer to de termine
number of interrupts that ha ve
occurred

Better Accuracy for > 10msBetter Accuracy for > 10ms
n Light load: 0.2% error

n Heavy load: Still ve ry high
error

K = 3, ε = 0.001

Intel Pentium III, Linux
Compensate for Timer Interrupt Handling

0.001

0.01

0.1

1

10

100

0 10 20 30 40 50

Expected CPU Time (ms)

M
ea

su
re

d
:E

xp
ec

te
d

 E
rr

o
r

Load 1

Load 2

Load 11

– 28 – 15-213, F’02

K-Best
on NT
K-Best
on NT

Acceptable accuracy for < 5 0msAcceptable accuracy for < 5 0ms
n Scheduler allows proces s to

run multiple intervals

Less accurate of > 10msLess accurate of > 10ms
n Light load: 2% error

n Heavy load: Generally very
high error

K = 3, ε = 0.001

Pentium II, Windows-NT

0.001

0.01

0.1

1

10

100

0 50 100 150 200 250 300

Expected CPU Time (ms)

M
ea

su
re

d
:E

xp
ec

te
d

 E
rr

o
r

Load 1

Load 2

Load 11

– 29 – 15-213, F’02

Time of Day ClockTime of Day Clock
n Unix gettimeofday() function

n Return elapsed time since reference time (Jan 1, 1970)

n Implementation
l Uses interval countin g on some machine s

» Coarse grained
l Uses cycle counte r on others

» Fine grained, but sig nificant overhead and only 1
microsecond resoluti on

#include <sys/time.h>
#include <unistd.h>

 struct timeval tstart, tfinish;
 double tsecs;
 gettimeofday(&tstart, NULL);
 P();
 gettimeofday(&tfinish, NULL);
 tsecs = (tfinish.tv_sec - tstart.tv_sec) +
 1e6 * (tfinish.tv_usec - tstart.tv_usec);

– 30 – 15-213, F’02

K-Best Using gettimeofdayK-Best Using gettimeofday

LinuxLinux
n As good as using cy cle

counter

n For times > 10 mic roseconds

WindowsWindows
n Implemented by in terval

counting

n Too coarse-grained

Using gettimeofday

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200 250 300

Expected CPU Time (ms)

M
ea

su
re

d
:E

xp
ec

te
d

 E
rr

o
r

Win-NT

Linux

Linux-comp

– 31 – 15-213, F’02

Measurement SummaryMeasurement Summary

Timing is highly case a nd system dependentTiming is highly case a nd system dependent
n What is overall duration being measured?

l > 1 second: interva l counting is OK
l << 1 second: mus t use cycle counte rs

n On what hardware / OS / OS version?
l Accessing counters

» How gettimeofday is implemented
l Timer interrupt overhead
l Scheduling policy

Devising a Measurement MethodDevising a Measurement Method
n Long durations: use Unix timing functions

n Short durations
l If possible, use gettimeofday
l Otherwise must work with cycle counters
l K-best scheme mos t successful

