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Outline
® Process
» Signals
* Reaping Child Processes
* Race Hazard

Process Concept

* An instance of running program
* Multiple processes run “concurrently” by
time slicing
— What is time slicing?
— Preemptive scheduler of OS: it can stop a
program at any point!
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Process IDs & Process Groups

* A process has its own, unique process ID
- pid_t getpid();
» A process belongs to exactly one process group
- pid_t getpgrp();
* A new process belongs to which process group?
— Its parent’s process group
* A process can make a process group for itself and
its children
-pid _t pid = getpid();
- setpgid (0, 0);
- getpgrp () — -pid
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Process Tree for Shell
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Signals

Important Signals (Fig 8.23)

e Section 8.5 in text

— Read at least twice ... really!

* A signal tells our program that some
event has occurred

* Can we use signals to count events?

— No

* SIGINT

— Interrupt signal from terminal (ctrl-c)

» SIGTSTP

— Stop signal from terminal (ctrl-z)

* SIGCHLD

— A child process has stopped or terminated
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Signals: sending

Signals: receiving

Process 1

kill(pid, SIGINT)

Process 2

—blocked
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[T TTTTTH—pending

* divide by zero:
SIGFPE

o ctrl-c: SIGINT

« child process exit:
SIGCHLD

OS procedure

OS Kernel

Check when
schedule the
process to run

Process 2

(LTI [T+ blocked
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OS procedure

OS Kernel
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Receiving a Signal

e Default action
— The process terminates [and dumps core]

— The process stops until restarted by a
SIGCONT signal

— The process ignore the signal
* Can modify (additional action)

— “Handle the signal”
+void sigint_handler (int sig);
+ signal (SIGINT, sigint_handler);

Reaping Child Process
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* Child process becomes zombie when terminates
— Still consume system resources
— Parent performs reaping on terminated child
-wait () waitpid()

 Straightforward for reaping a single child

 Tricky for Shell implementation!
— multiple child processes
— both foreground and background

Reaping Child Process

* Two waits
—sigchld_handler
— eval: for foreground processes
* One wait
—sigchld_handler

— But what about foreground processes?
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Busy Wait
if(fork() !'= 0) { /* parent */
addjob(...) ;

while (fg process still alive) {
/* do nothing */
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Pause

if(fork() !'= 0) { /* parent */
addjob(..) ;
while (fg process still alive) {

pause () ;
} \

} If signal handled before call to pause,
then pause will not return when
foreground process sends SIGCHLD
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Sleep

if(fork() !'= 0) { /* parent */
addjob(...) ;
while (fg process still alive) {
sleep(1l);
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waitpid ()

pid_t waitpid(pid t pid, int *status, int options)

- pid: wait until child process with pid has terminated
« —=1: wait for any child process
— status: tells why child terminated
- options:
* WNOHANG: return immediately if no children zombied
— returns -1
* WUNTRACED: report status of stopped children too

- wait (&status) equivalent to
waitpid (-1, &status,0)
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Status in Waitpid

. int status;
waitpid(pid, &status, NULL)
e Macros to evaluate status:
{ - WIFEXITED (status) : child exited normally
- WEXITSTATUS (status) : return code when child exits

- WIFSIGNALED (status) : child exited because of a signal
{ not caught

- WTERMSIG (status) : gives the terminating signal number
{ - WIFSTOPPED (status) : child is currently stopped

- WSTOPSIG (status) : gives the stop signal number
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Man page

* Check man page for details of a system
call:

— man waitpid
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Race Hazard

* A data structure is shared by two pieces
of code that can run concurrently

* Different behaviors of program
depending upon how the schedule
interleaves the execution of code.
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eval & sigchld_handler Race Hazard

sigchld handler () {
pid = waitpid(..);
deletejob (pid) ;

}

eval() {
pid = fork();
if (pid == 0)
{ /* child */
execve (..);
}
/* parent */
/* signal handler might run BEFORE addjob() */
addjob (..);
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An Okay Schedule

time Shell Signal Handler Child
Teorky
[addjob()
exit ()
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A Problematic Schedule

time Shell Signal Handler Child
[ fork ()
e execve ()
exit ()

sigchld handler ()
deletejobs ()

Job added to job list after the signal handler tried to delete it!

Blocking Signals

sigchld handler() {
pid = waitpid(..);
deletejob (pid) ;

}

eval() {

sigprocmask (SIG_BLOCK, ..)

pid = fork();

if(pid == 0)

{ /* child */
sigprocmask (SIG_UNBLOCK, ..)
execve (..);

}

/* parent */

/* signal handler might run BEFORE addjob() */

addjob (..) ;

sigprocmask (SIG_UNBLOCK, ..)

More details 8.5.6 (page 633)
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Summary
e Process
* Signals

Reaping Child Processes

Race Hazard

Check man page to understand the
system calls better

— man waitpid
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