15213 Recitation Section C

Shimin Chen
Oct. 28, 2002

Outline
® Process
» Signals
* Reaping Child Processes
* Race Hazard

Process Concept

* An instance of running program
* Multiple processes run “concurrently” by
time slicing
— What is time slicing?
— Preemptive scheduler of OS: it can stop a
program at any point!

15213 Recitation C 2 Shimin Chen

Process IDs & Process Groups

* A process has its own, unique process ID
- pid_t getpid();
» A process belongs to exactly one process group
- pid_t getpgrp();
* A new process belongs to which process group?
— Its parent’s process group
* A process can make a process group for itself and
its children
-pid _t pid = getpid();
- setpgid (0, 0);
- getpgrp () — -pid

15213 Recitation C 3 Shimin Chen

Process Tree for Shell

ff

i
| pid=32
| pgid=32

:

| pid=20

i ipid=40
| pgid=20 Pt
'

\pgid=40

Background Backgroud
@ process group 32 process group 40
pid=21 pid=22 i
pgid=20 pgid=20
:
Foreground
process group 20
15213 Recitation C 4 Shimin Chen

Signals

Important Signals (Fig 8.23)

e Section 8.5 in text

— Read at least twice ... really!

* A signal tells our program that some
event has occurred

* Can we use signals to count events?

— No

* SIGINT

— Interrupt signal from terminal (ctrl-c)

» SIGTSTP

— Stop signal from terminal (ctrl-z)

* SIGCHLD

— A child process has stopped or terminated

15213 Recitation C

Shimin Chen

15213 Recitation C

Shimin Chen

Signals: sending

Signals: receiving

Process 1

kill(pid, SIGINT)

Process 2

—blocked

(LITTITTIITT
[T TTTTTH—pending

* divide by zero:
SIGFPE

o ctrl-c: SIGINT

« child process exit:
SIGCHLD

OS procedure

OS Kernel

Check when
schedule the
process to run

Process 2

(LTI [T+ blocked
M I TIT pending

OS procedure

OS Kernel

15213 Recitation C

Shimin Chen

15213 Recitation C

Shimin Chen

Receiving a Signal

e Default action
— The process terminates [and dumps core]

— The process stops until restarted by a
SIGCONT signal

— The process ignore the signal
* Can modify (additional action)

— “Handle the signal”
+void sigint_handler (int sig);
+ signal (SIGINT, sigint_handler);

Reaping Child Process

15213 Recitation C 9 Shimin Chen

* Child process becomes zombie when terminates
— Still consume system resources
— Parent performs reaping on terminated child
-wait () waitpid()

 Straightforward for reaping a single child

 Tricky for Shell implementation!
— multiple child processes
— both foreground and background

Reaping Child Process

* Two waits
—sigchld_handler
— eval: for foreground processes
* One wait
—sigchld_handler

— But what about foreground processes?

15213 Recitation C 11 Shimin Chen

15213 Recitation C 10 Shimin Chen
Busy Wait
if(fork() !'= 0) { /* parent */
addjob(...) ;

while (fg process still alive) {
/* do nothing */

15213 Recitation C 12 Shimin Chen

Pause

if(fork() !'= 0) { /* parent */
addjob(..) ;
while (fg process still alive) {

pause () ;
} \

} If signal handled before call to pause,
then pause will not return when
foreground process sends SIGCHLD

15213 Recitation C 13 Shimin Chen

Sleep

if(fork() !'= 0) { /* parent */
addjob(...) ;
while (fg process still alive) {
sleep(1l);

15213 Recitation C 14 Shimin Chen

waitpid ()

pid_t waitpid(pid t pid, int *status, int options)

- pid: wait until child process with pid has terminated
« —=1: wait for any child process
— status: tells why child terminated
- options:
* WNOHANG: return immediately if no children zombied
— returns -1
* WUNTRACED: report status of stopped children too

- wait (&status) equivalent to
waitpid (-1, &status,0)

15213 Recitation C 15 Shimin Chen

Status in Waitpid

. int status;
waitpid(pid, &status, NULL)
e Macros to evaluate status:
{ - WIFEXITED (status) : child exited normally
- WEXITSTATUS (status) : return code when child exits

- WIFSIGNALED (status) : child exited because of a signal
{ not caught

- WTERMSIG (status) : gives the terminating signal number
{ - WIFSTOPPED (status) : child is currently stopped

- WSTOPSIG (status) : gives the stop signal number

15213 Recitation C 16 Shimin Chen

Man page

* Check man page for details of a system
call:

— man waitpid

15213 Recitation C 17 Shimin Chen

Race Hazard

* A data structure is shared by two pieces
of code that can run concurrently

* Different behaviors of program
depending upon how the schedule
interleaves the execution of code.

15213 Recitation C 18 Shimin Chen

eval & sigchld_handler Race Hazard

sigchld handler () {
pid = waitpid(..);
deletejob (pid) ;

}

eval() {
pid = fork();
if (pid == 0)
{ /* child */
execve (..);
}
/* parent */
/* signal handler might run BEFORE addjob() */
addjob (..);

15213 Recitation C 19 Shimin Chen

An Okay Schedule

time Shell Signal Handler Child
Teorky
[addjob()
exit ()

15213 Recitation C 20 Shimin Chen

A Problematic Schedule

time Shell Signal Handler Child
[fork ()
e execve ()
exit ()

sigchld handler ()
deletejobs ()

Job added to job list after the signal handler tried to delete it!

Blocking Signals

sigchld handler() {
pid = waitpid(..);
deletejob (pid) ;

}

eval() {

sigprocmask (SIG_BLOCK, ..)

pid = fork();

if(pid == 0)

{ /* child */
sigprocmask (SIG_UNBLOCK, ..)
execve (..);

}

/* parent */

/* signal handler might run BEFORE addjob() */

addjob (..) ;

sigprocmask (SIG_UNBLOCK, ..)

More details 8.5.6 (page 633)

15213 Recitation C 22 Shimin Chen

15213 Recitation C 21 Shimin Chen
Summary
e Process
* Signals

Reaping Child Processes

Race Hazard

Check man page to understand the
system calls better

— man waitpid

15213 Recitation C 23 Shimin Chen

