15213 Recitation Section C

Shimin Chen
Nov. 18, 2002

Outline
e Robust I/0 package
e Chapter 11 practice problems



Important Dates

e Lab 6 Malloc: due on Thursday, Nov 21
e Lab 7 Proxy: due on Thursday, Dec 5
e Final Exam: Tuesday, Dec 17

15213 Recitation C 2 Shimin Chen



Robust 1/0: RIO

- csapp.cand csapp.h

e Why?

— Hanc

— Hanc

les interrupted system calls

les short counts

— Good

| for network programming

 Two parts:
— Unbuffered 1/0
— Buffered I/0

15213 Recitation C

Shimin Chen



Rio: Unbuffered Input/Output

e Use Unix I/O
e No internal buffering

o Useful for reading/writing binary data to/from
networks

ssize_t rio_readn(int £fd, void* usrbuf, size t n)
— reads n bytes from £4 and put into usrbuf
— only returns short count on EOF

ssize t rio writen(int £d, void* usrbuf, size t n)
— writes n bytes from usrbuf to £d
— never returns short count

15213 Recitation C 4 Shimin Chen



RIO: Buffered Input

e Internal buffers

#define RIO_BUFSIZE 8192
typedef struct ({

int rio_ fd;

int rio_cnt;

char *rio_bufptr;

char rio_buf[RIO BUFSIZE];
} rio_t;

void rio_readinitb(rio_t* rp, int £d);
ssize_t rio_readlineb(rio_t* rp,

void* usrbuf, size_ t maxlen);
ssize_t rio_readnb(rio_t* rp,

void* usrbuf, size t n);

15213 Recitation C 5 Shimin Chen



Rio: Buffered Input

void rio_readinitb(rio_t* rp, int £d);
— called only once per open descriptor
— associate £d with a read buffer rio_t structure pointed to by rp

ssize_t rio_readlineb(rio_t* rp, void* usrbuf,
size_t maxlen);
— for reading text lines
— read a line (until *\n’) or maxlen-1 chars from file rp to usrbuf
— terminate the text line with null (zero) character
— returns number of chars read

ssize_t rio_readnb(rio_t* rp, void* usrbuf, size_t n);
— reads n bytes from rp into usrbuf
— Result string is NOT null-terminated!
— Returns number of bytes read

15213 Recitation C 6 Shimin Chen



rio readlineb

ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen)

{
int n, rc;
char ¢, *bufp = usrbuf;

for (n = 1; n < maxlen; n++) {

if ((rc = rio_read(rp, &c, 1)) == 1) {
*bufp++ = c;
if (¢ == '\n')
break;
}
else if (rc == 0) {
if (n == 1)
return O; /* EOF, no data read */
else
break; /* EOF, some data was read */
}
else
return -1; /* error */
}
*bufp = 0;

return n;




Interleaving RIO Read Functions

e Do not interleave calls on the same fd between the
buffered and unbuffered functions

e Within each set it is ok
buffered unbuffered

rio_readinitb rio readn

) ) rio writen
rio_readlineb —

rio readnb

e Why?

15213 Recitation C 8 Shimin Chen



Rio Error Checking

e RIO functions handle
— Short counts
— interrupted system calls

e All functions have upper case equivalents
— Rio_readn, Rio _writen, Rio readlineb, Rio_readnb, etcC.

— call unix error if the function encounters an error

e But EPIPE errors!
— for Lab 7, EPIPE should not terminate the process

15213 Recitation C 9 Shimin Chen



Problems from Chapter 11

e 11.1~11.5

15213 Recitation C 10 Shimin Chen



Problem 11.1

What 1s the output of the following program?

#include "csapp.h"

int main ()

{
int £dl, £d2;
fdl = Open("foo.txt", O_RDONLY, O0);
Close (£fdl) ;
fd2 = Open("baz.txt", O_RDONLY, O0);
printf ("£d2 = %d\n", £d2);
exit (0);

15213 Recitation C 11 Shimin Chen



Answer to 11.1

- stdin (descriptor O)
stdout (descriptor 1)
stderr (descriptor 2)

- open always returns lowest unopened
descriptor
e First open returns 3. close irees it.

e So second open also returns 3.

e Program prints: "£d2 = 3"

15213 Recitation C 12 Shimin Chen



File Sharing

e Descriptor table
— Each process has its own
— Child inherits from parents

e File Table

— set of all open files

— Shared by all processes

— Reference count of number of file descriptors pointing to each
entry

— File position

e V-node table

— Contains information in the stat structure
— Shared by all processes

15213 Recitation C 13 Shimin Chen



Problem 11.2

Suppose that foobar . txt consists of the 6 ASCII
characters "foobar". Then what 1s the output of the

following program?

#include "csapp.h"

int main()
{
int £d1l, £d2;
char c;
fdl = Open("foobar.txt", O_RDONLY, O0);
fd2 = Open("foobar.txt", O _RDONLY, O);
Read (£dl, &c, 1);
Read (£fd2, &c, 1);
printf ("c = %c\n", c);
exit (0);

}

15213 Recitation C 14

Shimin Chen



Answerto 11.2

The descriptors £d1 and £d2 each have their own open

file table entry, so each descriptor has its own file position
for foobar . txt. Thus, the read from £d2 reads the

first byte of foobar.txt, and the output is
c = £

and not

C o

as you might have thought 1nitially.

15213 Recitation C 15 Shimin Chen



Problem 11.3

As before, suppose foobar . txt consists of 6 ASCII
characters "foobar". Then what 1s the output of the

following program?

#include "csapp.h"

int main ()
{
int £d;
char c;

if (Fork() == 0)
{Read (fd, &c, 1); exit (0);}
Wait (NULL) ;
Read (fd, é&c, 1);
printf("c = %c\n", c);
exit (0);

fd = Open("foobar.txt", O_RDONLY, O0);

15213 Recitation C 16

Shimin Chen



Answer to 11.3

Child 1nherit’s the parent’s descriptor table.
So child and parent share an open file table
entry (refcount = 2). Hence they share a
file position.

Q
Il
O

15213 Recitation C 17 Shimin Chen



Problem 11.4

 How would you use dup2 to redirect
standard 1nput to descriptor 57

- int dup2 (int oldfd, int newfd);

— copies descriptor table entry old£d to
descriptor table entry newfd

15213 Recitation C 18 Shimin Chen



Answer to 11.4

dup2 (5,0) ;

or

dup2 (5, STDIN_FILENO),

15213 Recitation C 19 Shimin Chen



Problem 11.5

Assuming that foobar. txt consists of 6 ASCII
characters “foobar”. Then what 1s the output of the

following program?

{

}

int main()

int £d1l,
char c;

fdl = Open("foobar.txt",
fd2 = Open("foobar.txt",

Read (£d2,
Dup2 (£d2,
Read (£d1,

#include "csapp.h"

£d2;

&c, 1);
£dl);
&c, 1);

printf("c = %c\n", c);

exit (0);

O_RDONLY, O0);
O_RDONLY, O0);

15213 Recitation C

20

Shimin Chen



Answerto 11.5

We are redirecting £d1 to £d2. (fdl now

points to the same open file table entry as
fd2). So the second Read uses the file

position offset of £d2.

Q
Il
O

15213 Recitation C 21 Shimin Chen



