
15213 Recitation Section C

• Threads
• Synchronization
• Thread-safety of Library Functions

Shimin Chen
Dec. 2, 2002

Outline

215213 Recitation C Shimin Chen

Important Dates
• Lab 7 Proxy: due on Thursday, Dec 5

• Final Exam: Tuesday, Dec 17

315213 Recitation C Shimin Chen

Concurrent Servers
• Iterative servers can only serve one client at a time
• Concurrent servers are able to handle multiple requests

in parallel
• Required by L7 Part II

Web
Browser

Web
Server

Web
Browser

Web
Browser

Web
Server

Web
Server

Proxy

415213 Recitation C Shimin Chen

Three Ways for Creating Concurrent Servers
1. Processes

– Fork a child process for every incoming client connection
– Difficult to share data among child processes

2. Threads
– Create a thread to handle every incoming client connection
– Our focus today

3. I/O multiplexing with Unix select()
– Use select() to notice pending socket activity
– Manually interleave the processing of multiple open connections
– More complex!

• ~ implementing your own app-specific thread package!

515213 Recitation C Shimin Chen

Traditional View of a Process
• Process = process context + code, data, and stack

shared libraries

run-time heap

0

read/write data

Program context:
Data registers
Condition codes
Stack pointer (SP)
Program counter (PC)

Kernel context:
VM structures
Descriptor table
brk pointer

Code, data, and stack

read-only code/data

stack
SP

PC

brk

Process context

615213 Recitation C Shimin Chen

Alternate View of a Process
• Process = thread + code, data, and kernel context

shared libraries

run-time heap

0

read/write dataThread context:
Data registers
Condition codes
Stack pointer (SP)
Program counter (PC)

Code and Data

read-only code/data

stack
SP

PC

brk

Thread (main thread)

Kernel context:
VM structures
Descriptor table
brk pointer

715213 Recitation C Shimin Chen

A Process With Multiple Threads
• Multiple threads can be associated with a process

– Each thread has its own logical control flow (instruction flow)
– Each thread shares the same code, data, and kernel context
– Each thread has its own thread ID (TID)

shared libraries

run-time heap

0

read/write data

Shared code and data

read-only code/dataThread 1 context:
Data registers
Condition codes
SP1
PC1

stack 1

Thread 1
(main thread)

Kernel context:
VM structures
Descriptor table
brk pointer

Thread 2 context:
Data registers
Condition codes
SP2
PC2

stack 2

Thread 2
(peer thread)

815213 Recitation C Shimin Chen

Threads vs. Processes
• How threads and processes are similar

– Each has its own logical control flow.
– Each can run concurrently.
– Each is context switched.

• How threads and processes are different
– Threads share code and data, processes (typically) do not.
– Threads are somewhat less expensive than processes.

• Process control (creating and reaping) is twice as expensive as
thread control.

• Linux/Pentium III numbers:
– ~20K cycles to create and reap a process.
– ~10K cycles to create and reap a thread.

915213 Recitation C Shimin Chen

Posix Threads (Pthreads) Interface
• Standard interface for ~60 functions

– Creating and reaping threads.
• pthread_create

• pthread_join

– Determining your thread ID
• pthread_self

– Terminating threads
• pthread_cancel

• pthread_exit

• exit [terminates all threads] , return [terminates current thread]

– Synchronizing access to shared variables
• pthread_mutex_init

• pthread_mutex_[un]lock

• pthread_cond_init

• pthread_cond_[timed]wait

1015213 Recitation C Shimin Chen

The Pthreads "hello, world" Program
/*
* hello.c - Pthreads "hello, world" program
*/
#include "csapp.h"

void *thread(void *vargp);

int main() {
pthread_t tid;

Pthread_create(&tid, NULL, thread, NULL);
Pthread_join(tid, NULL);
exit(0);

}

/* thread routine */
void *thread(void *vargp) {
printf("Hello, world!\n");
return NULL;

}

Thread attributes
(usually NULL)

Thread arguments
(void *p)

return value
(void **p)

Upper case
Pthread_xxx

checks errors

1115213 Recitation C Shimin Chen

Execution of Threaded“hello, world”
main thread

main thread
waits for peer

thread to terminate

exit()
terminates

main thread and
any peer threads

peer thread

call Pthread_create()

call Pthread_join()

Pthread_join() returns

printf()

return NULL;
(peer thread
terminates)

Pthread_create() returns

1215213 Recitation C Shimin Chen

Thread-Based Concurrent Echo Server
int main(int argc, char **argv)
{

int listenfd, *connfdp, port, clientlen;
struct sockaddr_in clientaddr;
pthread_t tid;

if (argc != 2) {
fprintf(stderr, "usage: %s <port>\n", argv[0]);
exit(0);

}
port = atoi(argv[1]);

listenfd = open_listenfd(port);
while (1) {

clientlen = sizeof(clientaddr);
connfdp = Malloc(sizeof(int));
*connfdp = Accept(listenfd,(SA *)&clientaddr,&clientlen);
Pthread_create(&tid, NULL, thread, connfdp);

}
}

1315213 Recitation C Shimin Chen

Thread-Based Concurrent Server (cont)
* thread routine */
void *thread(void *vargp)
{

int connfd = *((int *)vargp);

Pthread_detach(pthread_self());
Free(vargp);

echo_r(connfd); /* thread-safe version of echo() */
Close(connfd);
return NULL;

}

?

1415213 Recitation C Shimin Chen

Issue 1: Detached Threads
• At any point in time, a thread is either joinable or detached.
• Joinable thread can be reaped and killed by other threads.

– must be reaped (with pthread_join) to free memory
resources.

• Detached thread cannot be reaped or killed by other threads.
– resources are automatically reaped on termination.

• Default state is joinable.
– use pthread_detach(pthread_self()) to make

detached.

• Why should we use detached threads?
– pthread_join blocks the calling thread

1515213 Recitation C Shimin Chen

Issue 2: Avoid Unintended Sharing

• For example, what happens if we pass the address of
connfd to the thread routine as in the following code?

connfdp = Malloc(sizeof(int));
*connfdp = Accept(listenfd,(SA *)&clientaddr,&clientlen);
Pthread_create(&tid, NULL, thread, connfdp);

connfd = Accept(listenfd,(SA *)&clientaddr,&clientlen);
Pthread_create(&tid, NULL, thread, (void *)&connfd);

1615213 Recitation C Shimin Chen

Issue 3: Thread-safe
• Easy to share data structures between threads
• But we need to do this correctly!
• Recall the shell lab:

– Job data structures
– Shared between main process and signal handler

• Need ways to synchronize multiple control
of flows

1715213 Recitation C Shimin Chen

Threads Memory Model
• Conceptual model:

– Each thread runs in the context of a process.
– Each thread has its own separate thread context.

• Thread ID, stack, stack pointer, program counter,
condition codes, and general purpose registers.

– All threads share the remaining process context.
• Code, data, heap, and shared library segments of the

process virtual address space.
• Open files and installed handlers

1815213 Recitation C Shimin Chen

Shared Variables in Conceptual Model

• global variables are shared
• stack variables are private

shared libraries

run-time heap

0

read/write data

Shared code and data

read-only code/dataThread 1 context:
Data registers
Condition codes
SP1
PC1

stack 1

Thread 1
(main thread)

Kernel context:
VM structures
Descriptor table
brk pointer

Thread 2 context:
Data registers
Condition codes
SP2
PC2

stack 2

Thread 2
(peer thread)

1915213 Recitation C Shimin Chen

Caveats of Conceptual Models
• In practice, any thread can read and write the

stack of any other thread.
• So one can use a global pointer to point to a

stack variable. Then all threads can access the
stack variable.

• But this is not a good programming practice.
• More details in this Thursday’s lecture

2015213 Recitation C Shimin Chen

Synchronization

• If multiple threads want to access a
shared global data structure, we need to
synchronize their accesses.

• Ways to do synchronization:
– Semaphores
– Mutex and conditions
– Etc.

2115213 Recitation C Shimin Chen

Synchronizing With Semaphores
• Classic solution: Dijkstra's P and V operations on

semaphores.
– semaphore: non-negative integer synchronization

variable.
• P(s): [while (s == 0) wait(); s--;]

– Dutch for "Proberen" (test)
• V(s): [s++;]

– Dutch for "Verhogen" (increment)

– OS guarantees that operations between brackets [] are
executed indivisibly.

• Only one P or V operation at a time can modify s.
• When while loop in P terminates, only that P can decrements.

• Semaphore invariant: (s >= 0)

2215213 Recitation C Shimin Chen

POSIX Semaphores (in csapp.c)
/* initialize semaphore sem to value */
/* pshared=0 if thread, pshared=1 if process */
void Sem_init(sem_t *sem, int pshared, unsigned int value) {
if (sem_init(sem, pshared, value) < 0)

unix_error("Sem_init");
}

/* P operation on semaphore sem */
void P(sem_t *sem) {
if (sem_wait(sem))

unix_error("P");
}

/* V operation on semaphore sem */
void V(sem_t *sem) {
if (sem_post(sem))

unix_error("V");
}

2315213 Recitation C Shimin Chen

Sharing With POSIX Semaphores

#include "csapp.h"
#define NITERS 10000000

unsigned int cnt; /* counter */
sem_t sem; /* semaphore */

int main() {
pthread_t tid1, tid2;

Sem_init(&sem, 0, 1);

/* create 2 threads and wait */
......

exit(0);
}

/* thread routine */
void *count(void *arg)
{
int i;

for (i=0;i<NITERS;i++){
P(&sem);
cnt++;
V(&sem);

}
return NULL;

}

2415213 Recitation C Shimin Chen

Thread-safety of Library Functions
• All functions in the Standard C Library (at the back of

your K&R text) are thread-safe.
– Examples: malloc, free, printf, scanf

• Most Unix system calls are thread-safe, with a few
exceptions:

Thread-unsafe function Class Reentrant version
asctime 3 asctime_r
ctime 3 ctime_r
gethostbyaddr 3 gethostbyaddr_r
gethostbyname 3 gethostbyname_r
inet_ntoa 3 (none)
localtime 3 localtime_r
rand 2 rand_r

2515213 Recitation C Shimin Chen

Thread-Unsafe Functions: Fixes
• Return a ptr to a static

variable.
• Fixes:

1. Rewrite code so caller
passes pointer to struct.

• Issue: Requires changes
in caller and callee.

hostp = Malloc(...));
gethostbyname_r(name, hostp);

struct hostent
*gethostbyname(char name)
{
static struct hostent h;
<contact DNS and fill in h>
return &h;

}

2615213 Recitation C Shimin Chen

Thread-Unsafe Functions: Fixes
• Return a ptr to a static

variable.
• Fixes:

2. Lock-and-copy
• Issue: Requires only

simple changes in
caller

• However, caller must
free memory.

struct hostent
*gethostbyname(char name)
{
static struct hostent h;
<contact DNS and fill in h>
return &h;

}

struct hostent
*gethostbyname_ts(char *p)
{
struct hostent *q = Malloc(...);
P(&mutex); /* lock */
p = gethostbyname(name);
*q = *p; /* copy */
V(&mutex);
return q;

}

2715213 Recitation C Shimin Chen

Summary

• Threading is a clean and efficient way to
implement concurrent server

• We need to synchronize multiple threads
for concurrent accesses to shared
variables
– Semaphore is one way to do this
– Thread-safety is the difficult part of thread

programming

