Carnegie Mellon

Introduction to Computer Systems

15-213/18-243, spring 2009
5th Lecture, Jan. 27t

Instructors:
Gregory Kesden and Markus Puschel

Carnegie Mellon

Last Time: Floating Point

Fractional binary numbers

IEEE floating point standard: Definition
Example and properties

Rounding, addition, multiplication
Floating point in C

Summary

Carnegie Mellon

Machine Programming |: Basics

m History of Intel processors and architectures
m C, assembly, machine code

m Assembly Basics: Registers, operands, move

Carnegie Mellon

Intel x86 Processors

m Totally dominate computer market

m Evolutionary design

= Backwards compatible up until 8086, introduced in 1978
= Added more features as time goes on

m Complex instruction set computer (CISC)
= Many different instructions with many different formats
= But, only small subset encountered with Linux programs

" Hard to match performance of Reduced Instruction Set Computers
(RISC)

= But, Intel has done just that!

Intel x86 Evolution: Milestones

Name Date Transistors MHz

m 8086 1978 29K 5-10
" First 16-bit processor. Basis for IBM PC & DOS
= 1MB address space

m 386 1985 275K 16-33
® First 32 bit processor , referred to as I1A32
= Added “flat addressing”

= Capable of running Unix
= 32-bit Linux/gcc uses no instructions introduced in later models

m Pentium 4F 2005 230M 2800-3800

" First 64-bit processor

= Meanwhile, Pentium 4s (Netburst arch.) phased out in favor of
“Core” line

Intel x86 Processors: Overview

X86-16 8086
286
X86-32/1A32 386
486
Pentium
MMX Pentium MMX
SSE Pentium Il
SSE2 Pentium 4
SSE3 Pentium 4E
X86-64 / EM64t Pentium 4F
Core 2 Duo
SSE4 Corei7

IA: often redefined as latest Intel architecture

Intel x86 Processors, contd.

m Machine Evolution

= 486 1989 1.9M
= Pentium 1993 3.1M
= Pentium/MMX 1997 4.5M
= PentiumPro 1995 6.5M
= Pentium Il 1999 8.2M
" Pentium 4 2001 42M

" Core 2 Duo 2006 291M

m Added Features

" |nstructions to support multimedia operations
= Parallel operations on 1, 2, and 4-byte data, both integer & FP
" |nstructions to enable more efficient conditional operations

m Linux/GCC Evolution
= Very limited

Carnegie Mellon

More Information

m Intel processors (Wikipedia)

m Intel microarchitectures

http://en.wikipedia.org/wiki/List_of_Intel_microprocessors
http://processorfinder.intel.com/Default.aspx

Carnegie Mellon

New Species: ia64, then IPF, then Itanium,...

Name Date Transistors

m Itanium 2001 10M
= First shot at 64-bit architecture: first called 1A64
= Radically new instruction set designed for high performance
® Can run existing IA32 programs
= On-board “x86 engine”
= Joint project with Hewlett-Packard

m Itanium 2 2002 221M
= Big performance boost
m Itanium 2 Dual-Core 2006 1.7B

m Itanium has not taken off in marketplace

= Lack of backward compatibility, no good compiler support, Pentium
4 got too good

Carnegie Mellon

x86 Clones: Advanced Micro Devices (AMD)

m Historically
= AMD has followed just behind Intel
= A little bit slower, a lot cheaper

m Then

= Recruited top circuit designers from Digital Equipment Corp. and
other downward trending companies

= Built Opteron: tough competitor to Pentium 4
= Developed x86-64, their own extension to 64 bits

m Recently

" |ntel much quicker with dual core design
" |ntel currently far ahead in performance
" em64t backwards compatible to x86-64

Carnegie Mellon

Intel’s 64-Bit

m Intel Attempted Radical Shift from IA32 to IA64
= Totally different architecture (Itanium)
= Executes IA32 code only as legacy
= Performance disappointing

m AMD Stepped in with Evolutionary Solution
= x86-64 (now called “AMD64”)

m Intel Felt Obligated to Focus on I1A64
" Hard to admit mistake or that AMD is better

m 2004: Intel Announces EM64T extension to IA32
= Extended Memory 64-bit Technology

= Almost identical to x86-64!
= Qur Saltwater fish machines

m Meanwhile: EM64t well introduced,
however, still often not used by OS, programs

Carnegie Mellon

Our Coverage

m |IA32
" The traditional x86

m x86-64/EM64AT

" The emerging standard

m Presentation
= Book has IA32
= Handout has x86-64
= Lecture will cover both

Carnegie Mellon

Machine Programming |: Basics

m History of Intel processors and architectures
m C, assembly, machine code

m Assembly Basics: Registers, operands, move

Carnegie Mellon

Definitions

m Architecture: (also instruction set architecture: ISA) The
parts of a processor design that one needs to understand
to write assembly code.

m Microarchitecture: Implementation of the architecture.

m Architecture examples: instruction set specification,
registers.

m Microarchitecture examples: cache sizes and core
frequency.

m Example ISAs (Intel): x86, IA, IPF

Assembly Programmer’s View

CPU Memory
Addresses
Registers | Object Code
PC Dat
. atd | Program Data
Condition Instructions L[
Codes)

Stack
m Programmer-Visible State

® PC: Program counter

= Address of next instruction
= Called “EIP” (1A32) or “RIP” (x86-64)

= Register file

" Memory

= Byte addressable array

= Heavily used program data

®= Condition codes

. . = Code, user data, (some) OS data
» Store status information about most

recent arithmetic operation = Includes stack used to support

= Used for conditional branching procedures

Turning C into Object Code

= Codeinfiles pl.c p2.c

= Compile with command: gcec -0 pl.c p2.c -o p
= Use optimizations (-0O)
= Put resulting binary in file p

text Cprogram (pl.c p2.c)

Compiler (gcc -S)

text Asm program (pl.s p2.s)

Assembler (gcc or as)

binary Object program (pl.o p2.0) Static libraries
(.a)

Linker (gcc or 1d)

binary Executable program (p)

Carnegie Mellon

Compiling Into Assembly

C Code Generated IA32 Assembly
int sum(int x, int y) sum:
{ pushl 3ebp
int t = x+ty; movl %esp, sebp
return t; movl 12 (%ebp) ,%eax
} addl 8 (%ebp) , Seax
movl %ebp, sesp
// popl %ebp
ret
Obtain with command /
gcc -0 -S Some compilers use single

instruction “leave”
code.cC

Produces file code. s

Assembly Characteristics: Data Types

m “Integer” data of 1, 2, or 4 bytes
= Data values
= Addresses (untyped pointers)

m Floating point data of 4, 8, or 10 bytes

m No aggregate types such as arrays or structures
= Just contiguously allocated bytes in memory

Carnegie Mellon

Assembly Characteristics: Operations

m Perform arithmetic function on register or memory data

m Transfer data between memory and register
= Load data from memory into register
= Store register data into memory

m Transfer control
= Unconditional jumps to/from procedures
® Conditional branches

Object Code

Code for sum
m Assembler

0x401040 <sum>:)
" Translates .s into .o

0x55
0x89 = Binary encoding of each instruction
Oxe> = Nearly-complete image of executable code
0x8b .. . T
0x45 = Missing linkages between code in different
0x0c files
0x03 m Linker
0x45
= Resolves references between files
0x08 e Total of 13 bytes
0x89 y "= Combines with static run-time libraries

Oxec ° Eachinstruction
0x5d 1, 2, or 3 bytes

Oxc3 e Starts at address
0x401040 = Linking occurs when program begins

execution

= E.g.,codeformalloc, printf

= Some libraries are dynamically linked

Carnegie Mellon

Machine Instruction Example

int t = x+ty;

addl 8 (%ebp) , $eax

Similar to expression:
X +t= y
More precisely:
int eax;
int *ebp;
eax += ebp[2]

0x401046: 03 45 08

m C Code

= Add two signed integers

m Assembly
= Add 2 4-byte integers
= “Long” words in GCC parlance
= Same instruction whether signed

or unsigned
" Operands:
x: Register eax
y: Memory M[%ebp+8]
t: Register %eax

— Return function value in $eax

m Object Code

= 3-pyte instruction
= Stored at address 0x401046

Disassembling Object Code

Disassembled

00401040 < sum>:
0: 55 push %ebp
1: 89 e5 mov %esp, $ebp
3: 8b 45 Oc mov Oxc (%ebp) , seax
6: 03 45 08 add 0x8 (%ebp) , seax
9: 89 ec mov %ebp, $esp
b: 5d pop sebp
C: c3 ret
d: 8d 76 00 lea 0x0 (%esi) , $esi

m Disassembler
objdump -d p
= Useful tool for examining object code
= Analyzes bit pattern of series of instructions
" Produces approximate rendition of assembly code
= Can be run on either a.out (complete executable) or . o file

Carnegie Mellon

Alternate Disassembly
Disassembled

Object
0x401040 : 0x401040 <sum>: push %ebp
0x55 0x401041 <sum+l>: mov %esp, sebp
0x89 0x401043 <sum+3>: mov Oxc (%ebp) , seax
Oxe5 0x401046 <sum+6>: add 0x8 (%ebp) , seax
0x8b 0x401049 <sum+9>: mov %ebp, %sesp
0x45 0x40104b <sum+1l1l>: pop %ebp
0x0c 0x40104c <sum+l2>: ret
0x03 0x40104d <sum+13>: lea 0x0 (%esi) , $esi
0x45
0x08
0x89 m Within gdb Debugger
Oxec
db
0x5d g_ P
Oxc3 disassemble sum

= Disassemble procedure
x/13b sum
= Examine the 13 bytes starting at sum

Carnegie Mellon

What Can be Disassembled?

% objdump -d WINWORD.EXE
WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:

30001000: 55 push %ebp
30001001: 8b ec mov %esp, $ebp
30001003: 6a ff push SOXffffffff

30001005: 68 90 10 00 30 push $0x30001090
3000100a: 68 91 dc 4c 30 push $0x304cdc9l

m Anything that can be interpreted as executable code
m Disassembler examines bytes and reconstructs assembly source

Carnegie Mellon

Machine Programming |: Basics

m History of Intel processors and architectures
m C, assembly, machine code

m Assembly Basics: Registers, operands, move

Carnegie Mellon

Integer Registers (I1A32) Origin

(mostly obsolete)

—
$eax %ax %ah sal accumulate
$ecx $cx $ch Scl counter

A

3

= Tedx $dx %dh sdl data

2 <

©

o ebx $bx $bh bl base

c

O

% o 1 %gi source
oSl S index

- destination

) o A4
6edl odl index

-

o o stack
P—< /S]
€SP ol pointer
base
sebp $bp :
pointer
\)
Y

16-bit virtual registers
(backwards compatibility)

Carnegie Mellon

Moving Data: I1A32 seax
Tecx
m Moving Data Sedx
" movx Source, Dest 2 ebx
= xin{b, w, 1} -

zesi
= movl Source, Dest: $Sedi
Move 4-byte “long word” %esp

" movw Source, Dest:. 2eb
Move 2-byte “word” —

" movb Source, Dest:.
Move 1-byte “byte”

m Lots of these in typical code

Moving Data: IA32 yeax

m Moving Data secx
movl Source, Dest: $edx

o
m Operand Types sebx
* |mmediate: Constant integer data sesi
= Example: $0x400, $-533 cadi
= Like C constant, but prefixed with ‘$ Yesp

= Encoded with 1, 2, or 4 bytes

sebp

= Register: One of 8 integer registers
= Example: $eax, %edx
= But $esp and $ebp reserved for special use
= Others have special uses for particular instructions

= Memory: 4 consecutive bytes of memory at address given by register
= Simplest example: (%$eax)

= Various other “address modes”

Carnegie Mellon

movl Operand Combinations

Source Dest Src,Dest C Analog
4 Reg movl $0x4, %eax temp = 0x4;
Imm
Mem movl $-147, (%$eax) *p = -147;
movl < Reg Reg movl %eax, %edx temp2 = templ;
Mem movl %eax, (%edx) *p = temp;

N Mem Reg movl (%eax) ,b sedx temp = *p;

Cannot do memory-memory transfer with a single instruction

Carnegie Mellon

Simple Memory Addressing Modes

m Normal (R) Mem[Reg[R]]
= Register R specifies memory address

movl (%ecx) ,%eax

m Displacement D(R) Mem|[Reg[R]+D]
= Register R specifies start of memory region
" Constant displacement D specifies offset

movl 8 (%ebp) , $edx

Using Simple Addressing Modes

{
int t0 =
int tl1 =
*xp = tl;
*yp = t0;

*xp;
*yp;

void swap (int *xp,

int *yp)

swap:
pushl
movl
pushl

movl
movl
movl
movl
movl
movl

movl
movl

popl
ret

sebp
sesp, sebp
sebx

12 (%ebp) , $ecx
8 (%ebp) , $edx
%ecx) , $eax
%edx) , Sebx
%eax, (%$edx)
%ebx, (%$ecx)

-4 (%ebp) ,%5ebx
sebp, sesp
sebp

. Set

> Body

> Finish

Using Simple Addressing Modes

swap:
pushl $%$ebp h
movl %esp, sebp > Set
void swap(int *xp, int *yp) pushl %ebx J Up
{
int t0 = *xp; movl 12 (%ebp) ,%ecx A
int tl1 = *yp; movl 8 (%ebp) , $edx
*xp = tl; movl (%ecx), %eax
*yp = t0; movl (%edx),%ebx " Body
) movl %eax, (%edx)
movl %ebx, (%ecx) y
movl -4 (%$ebp),%ebx)
movl %ebp, sesp
popl %ebp > Finish
ret

Carnegie Mellon

Understanding Swap

void swap (int *xp, int *yp)
{
int t0 = *xp;
int tl1 = *yp;
*xp = tl1;
*yp = t0;
}
Register Value
secx ypP movl
sedx xXp movl
Feax tl movl
$ebx t0 movl
movl
movl

(in memory)

%ebp

(tl)
(t0)

o
. Stack
([J
Offset
12 YP
8 Xp
4 | Rtnadr
0 |Old %ebp j—
-4 |0ld %ebx
12 (%ebp) ,%ecx # ecx = yp
8 (%ebp) ,%edx # edx = xp
%ecx) , %eax # eax = *yp
(%edx) , $ebx # ebx = *xp
Seax, (%edx) # *xp = eax
%ebx, (%ecx) # *yp = ebx

Carnegie Mellon

Address
Understanding Swap 123 | 0x124
456 0x120
Oxllc
%eax 0x118
Sedx Offset 0x114
%ecx YP 12 10x120 | ox110
X 8 | 0x124
%ebx P 0x10c
4 Rtn adr 0x108
Sesi 0
Sebp — 0x104
$edi -4
0x100
sesp
movl 12 (%ebp) , $ecx # ecx = yp
$ebp| 0x104 movl 8 (%ebp) ,%$edx # edx = xp
movl (%ecx), %eax # eax = *yp (tl)
movl (%edx), %ebx # ebx = *xp (t0)
movl %$eax, (%$edx) # *xp = eax

ebx

movl %ebx, (%$ecx) # *yp

Carnegie Mellon

Address
Understanding Swap 123 | 0x124
456 0x120
Oxllc
%eax 0x118
Sedx Offset 0x114
secx| 0x120 YP 12 10x120 | ox110
8 | 0x124
%ebx xp - 0x10c
4 Rtn adr 0x108
Sesi 0
Sebp — 0x104
$edi -4
0x100
sesp
movl 12 (%ebp) , %ecx # ecx = yp
$ebp| 0x104 movl 8 (%ebp) ,%$edx # edx = xp
movl (%ecx), %eax # eax = *yp (tl)
movl (%edx), %ebx # ebx = *xp (t0)
movl %$eax, (%$edx) # *xp = eax

ebx

movl %ebx, (%$ecx) # *yp

Carnegie Mellon

Address
Understanding Swap 123 | ox124
456 0x120
Oxllc
seax 0x118
sedx| 0x124 Offset 0x114
secx| 0x120 YP 12 10x120 | ox110
8 | 0x124
%ebx xP - 0x10c
4 Rtn adr 0x108
Sesi 0
tebp — 0x104
$edi -4
0x100
sesp
movl 12 (%ebp) , $ecx # ecx = yp
tebp| 0x104 movl 8 (%ebp) ,$edx # edx = xp
movl (%ecx), %eax # eax = *yp (tl)
movl (%edx), %ebx # ebx = *xp (t0)
movl %$eax, (%$edx) # *xp = eax

ebx

movl %ebx, (%$ecx) # *yp

Carnegie Mellon

Address
Understanding Swap 123 | ox124
456 0x120
Oxllc
%eax 456 0x118
sedx| 0x124 Offset 0x114
secx| 0x120 YP 12 10x120 | ox110
8 | 0x124
%ebx xp - 0x10c
4 Rtn adr 0x108
Sesi 0
tebp — 0x104
$edi -4
0x100
sesp
movl 12 (%ebp) , $ecx # ecx = yp
$ebp| 0x104 movl 8 (%ebp) ,%$edx # edx = xp
movl (%ecx) , %$eax # eax = *yp (tl)
movl (%edx), %ebx # ebx = *xp (t0)
movl %$eax, (%$edx) # *xp = eax

movl %ebx, (%$ecx) # *yp = ebx

Carnegie Mellon

Understanding Swap

$eax

456

$edx

0x124

$ecx

0x120

$ebx

123

$esi

$edi

sesp

%ebp

0x104

movl
movl
movl
movl
movl

movl

yp
Xp

sebp /™ 0

12 (%ebp) , Secx
8 ($ebp) , $edx

%ecx) ,%eax
(%$edx) , $ebx
%eax, (%edx)

%$ebx, (%$ecx)

123

456

Offset

12

0x120

8

0x124

4

Rtn adr

-4

ecx =
edx =
eax =
ebx =
*xp =

*yp

3

Xp

*xp
eax
= ebx

Address
0x124

0x120
Ox1llc
0x118
0x114
0x110
0x10c
0x108
0x104
0x100

(tl)
(t0)

Understanding Swap

$eax

456

$edx

0x124

$ecx

0x120

$ebx

123

$esi

$edi

sesp

%ebp

0x104

movl
movl
movl
movl
movl

movl

456
456
Offset
YP 12 | 0x120
Xp 8 | 0x124
4 | Rtn adr
sebp /™ 0
-4
12 (%ebp) , $ecx # ecx = yp
8 (%ebp) , $edx # edx = xp
%ecx) , %eax # eax = *yp
(%$edx) , $ebx # ebx = *xp
%seax, (%edx) # *xp = eax

%ebx, (%ecx) # *yp

ebx

Address

0x124
0x120
Ox1llc
0x118
0x114
0x110
0x10c
0x108
0x104
0x100

(tl)
(t0)

Understanding Swap

$eax

456

$edx

0x124

$ecx

0x120

$ebx

123

$esi

$edi

sesp

%ebp

0x104

movl
movl
movl
movl
movl

movl

456
123
Offset
YP 12 | 0x120
Xp 8 | 0x124
4 | Rtn adr
sebp /™ 0
-4
12 (%ebp) , $ecx # ecx = yp
8 (%ebp) , $edx # edx = xp
%ecx) , %eax # eax = *yp
(%$edx) , $ebx # ebx = *xp
%eax, (%edx) # *xp = eax

%ebx, (%ecx) # *yp

= ebx

Address

0x124
0x120
Ox1llc
0x118
0x114
0x110
0x10c
0x108
0x104
0x100

(tl)
(t0)

Carnegie Mellon

Complete Memory Addressing Modes

m Most General Form
D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]
= D: Constant “displacement” 1, 2, or 4 bytes
= Rb: Base register: Any of 8 integer registers

Ri: Indexregister: Any, except for $Sesp
= Unlikely you'd use $ebp, either
=S Scale: 1, 2, 4, or 8 (why these numbers?)

m Special Cases

(Rb,Ri) Mem[Reg[Rb]+Reg|[Ri]]
D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]
(Rb,Ri,S) Mem|[Reg[Rb]+S*Reg[Ri]]

