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Last Time

 Program optimization
 Optimization blocker: Memory aliasing

 One solution: Scalar replacement of array accesses that are reused

for (i = 0; i < n; i++) {

b[i] = 0;

for (j = 0; j < n; j++)

b[i] += a[i*n + j];

}

for (i = 0; i < n; i++) {

double val = 0;

for (j = 0; j < n; j++)

val += a[i*n + j];

b[i] = val;

}
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 Instruction level parallelism

 Latency versus throughput

Functional
Units

Integer/
Branch

FP
Add

FP
Mult/Div

Load Store
General
Integer

Step 1
1 cycle

Step 2
1 cycle

Step 10
1 cycle

latency cycles/issue

Integer Multiply 10 1
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Today

 Memory hierarchy, caches, locality

 Cache organization

 Program optimization:
 Cache optimizations
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Problem: Processor-Memory Bottleneck

Main 
Memory

CPU Reg

Processor performance
doubled about 
every 18 months Bus bandwidth

evolved much slower

Core 2 Duo:
Can process at least
256 Bytes/cycle
(1 SSE two operand add and mult)

Core 2 Duo:
Bandwidth
2 Bytes/cycle
Latency
100 cycles

Solution: Caches
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Cache

 Definition: Computer memory with short access time 
used for the storage of frequently or recently used 
instructions or data
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General Cache Mechanics
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Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized 
transfer units

Smaller, faster, more expensive
memory caches a  subset of
the blocks
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General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14
Block b is in cache:
Hit!
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General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memory

Request: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
• Replacement policy:

determines which block
gets evicted (victim)
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Cache Performance Metrics

 Miss Rate
 Fraction of memory references not found in cache (misses / accesses)

= 1 – hit rate

 Typical numbers (in percentages):

 3-10% for L1

 can be quite small (e.g., < 1%) for L2, depending on size, etc.

 Hit Time
 Time to deliver a line in the cache to the processor

 includes time to determine whether the line is in the cache

 Typical numbers:

 1-2 clock cycle for L1

 5-20 clock cycles for L2

 Miss Penalty
 Additional time required because of a miss

 typically 50-200 cycles for main memory (Trend: increasing!)
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Lets think about those numbers

 Huge difference between a hit and a miss
 Could be 100x, if just L1 and main memory

 Would you believe 99% hits is twice as good as 97%?
 Consider: 

cache hit time of 1 cycle
miss penalty of 100 cycles

 Average access time:

97% hits:  1 cycle + 0.03 * 100 cycles = 4 cycles

99% hits:  1 cycle + 0.01 * 100 cycles = 2 cycles

 This is why “miss rate” is used instead of “hit rate”
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Types of Cache Misses

 Cold (compulsory) miss
 Occurs on first access to a block

 Conflict miss
 Most hardware caches limit blocks to a small subset (sometimes a 

singleton) of the available cache slots

 e.g., block i must be placed in slot (i mod 4)

 Conflict misses occur when the cache is large enough, but multiple 
data objects all map to the same slot

 e.g., referencing blocks 0, 8, 0, 8, ... would miss every time

 Capacity miss
 Occurs when the set of active cache blocks (working set) is larger 

than the cache
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Why Caches Work

 Locality: Programs tend to use data and instructions with 
addresses near or equal to those they have used recently

 Temporal locality:  
 Recently referenced items are likely 

to be referenced again in the near future

 Spatial locality:  
 Items with nearby addresses tend 

to be referenced close together in time

block

block



Carnegie Mellon

Example: Locality?

 Data:
 Temporal: sum referenced in each iteration

 Spatial: array a[] accessed in stride-1 pattern

 Instructions:
 Temporal: cycle through loop repeatedly

 Spatial: reference instructions in sequence

 Being able to assess the locality of code is a crucial skill 
for a programmer

sum = 0;

for (i = 0; i < n; i++)

sum += a[i];

return sum;
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Locality Example #1

int sum_array_rows(int a[M][N])

{

int i, j, sum = 0;

for (i = 0; i < M; i++)

for (j = 0; j < N; j++)

sum += a[i][j];

return sum;

}
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Locality Example #2

int sum_array_cols(int a[M][N])

{

int i, j, sum = 0;

for (j = 0; j < N; j++)

for (i = 0; i < M; i++)

sum += a[i][j];

return sum;

}
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Locality Example #3

int sum_array_3d(int a[M][N][N])

{

int i, j, k, sum = 0;

for (i = 0; i < M; i++)

for (j = 0; j < N; j++)

for (k = 0; k < N; k++)

sum += a[k][i][j];

return sum;

}

 How can it be fixed?
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Memory Hierarchies

 Some fundamental and enduring properties of hardware and 
software systems:
 Faster storage technologies almost always cost more per byte and 

have lower capacity

 The gaps between memory technology speeds are widening

 True of registers ↔ DRAM, DRAM ↔ disk, etc.

 Well-written programs tend to exhibit good locality

 These properties complement each other beautifully

 They suggest an approach for organizing memory and 
storage systems known as a memory hierarchy
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An Example Memory Hierarchy

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,  
slower, 
cheaper 
per byte

remote secondary storage
(tapes, distributed file systems, Web servers)

Local disks hold files 
retrieved from disks on 
remote network servers

Main memory holds disk blocks 
retrieved from local disks

off-chip L2
cache (SRAM)

L1 cache holds cache lines retrieved from 
L2 cache

CPU registers hold words retrieved from
L1 cache

L2 cache holds cache lines retrieved 
from main memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
costlier
per byte
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Examples of Caching in the Hierarchy

Hardware0On-Chip TLBAddress translationsTLB

Web browser10,000,000Local diskWeb pagesBrowser cache

Web cache

Network buffer 
cache

Buffer cache

Virtual Memory

L2 cache

L1 cache

Registers

Cache Type

Web pages

Parts of files

Parts of files

4-KB page

64-bytes block

64-bytes block

4-byte words

What is Cached?

Web proxy 
server

1,000,000,000Remote server disks

OS100Main memory

Hardware1On-Chip L1

Hardware10Off-Chip L2

AFS/NFS client10,000,000Local disk

Hardware+OS100Main memory

Compiler0CPU core

Managed ByLatency (cycles)Where is it Cached?
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Memory Hierarchy: Core 2 Duo

Disk

Main 
Memory

L2 
unified 
cache

L1 
I-cache

L1 
D-cache

CPU Reg

2 B/cycle8 B/cycle16 B/cycle 1 B/30 cyclesThroughput:

Latency: 100 cycles14 cycles3 cycles millions

~4 MB

32 KB

~4 GB ~500 GB

Not drawn to scale 

L1/L2 cache: 64 B blocks
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Today

 Memory hierarchy, caches, locality

 Cache organization

 Program optimization:
 Cache optimizations
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General Cache Organization (S, E, B)

E = 2e lines per set

S = 2s sets

set

line

0 1 2 B-1tagv

valid bit
B = 2b bytes per cache block (the data)

Cache size:
S x E x B data bytes
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Cache Read

E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit
B = 2b bytes per cache block (the data)

t bits s bits b bits

Address of word:

tag set
index

block
offset

data begins at this offset

• Locate set
• Check if any line in set

has matching tag
• Yes + line valid: hit
• Locate data starting

at offset
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Example: Direct Mapped Cache (E = 1)

S = 2s sets

Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set
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Example: Direct Mapped Cache (E = 1)
Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

match: assume yes = hitvalid?   +

block offset

tag
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Example: Direct Mapped Cache (E = 1)
Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

match: assume yes = hitvalid?   +

int (4 Bytes) is here

block offset

No match: old line is evicted and replaced
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Example
int sum_array_rows(double a[16][16])

{

int i, j;

double sum = 0;

for (i = 0; i < 16; i++)

for (j = 0; j < 16; j++)

sum += a[i][j];

return sum;

}

32 B = 4 doubles

assume: cold (empty) cache,
a[0][0] goes here

int sum_array_cols(double a[16][16])

{

int i, j;

double sum = 0;

for (j = 0; i < 16; i++)

for (i = 0; j < 16; j++)

sum += a[i][j];

return sum;

} blackboard

Ignore the variables sum, i, j
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E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

find set
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E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid?  + match: yes = hit

block offset

tag
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E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

match both

valid?  + match: yes = hit

block offset

short int (2 Bytes) is here

No match: 
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), …
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Example
int sum_array_rows(double a[16][16])

{

int i, j;

double sum = 0;

for (i = 0; i < 16; i++)

for (j = 0; j < 16; j++)

sum += a[i][j];

return sum;

}

32 B = 4 doubles

assume: cold (empty) cache,
a[0][0] goes here

int sum_array_rows(double a[16][16])

{

int i, j;

double sum = 0;

for (j = 0; i < 16; i++)

for (i = 0; j < 16; j++)

sum += a[i][j];

return sum;

}
blackboard

Ignore the variables sum, i, j
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What about writes?

 Multiple copies of data exist:
 L1, L2, Main Memory, Disk

 What to do one a write-hit?
 Write-through (write immediately to memory)

 Write-back (defer write to memory until replacement of line)

 Need a dirty bit (line different from memory or not)

 What to do on a write-miss?
 Write-allocate (load into cache, update line in cache)

 Good if more writes to the location follow

 No-write-allocate (writes immediately to memory)

 Typical
 Write-through + No-write-allocate

 Write-back + Write-allocate
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Software Caches are More Flexible

 Examples

 File system buffer caches, web browser caches, etc.

 Some design differences

 Almost always fully associative

 so, no placement restrictions

 index structures like hash tables are common

 Often use complex replacement policies

 misses are very expensive when disk or network involved

 worth thousands of cycles to avoid them

 Not necessarily constrained to single “block” transfers

 may fetch or write-back in larger units, opportunistically
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Today

 Memory hierarchy, caches, locality

 Cache organization

 Program optimization:
 Cache optimizations
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Optimizations for the Memory Hierarchy

 Write code that has locality
 Spatial: access data contiguously

 Temporal: make sure access to the same data is not too far apart in 
time

 How to achieve?
 Proper choice of algorithm

 Loop transformations

 Cache versus register level optimization:
 In both cases locality desirable

 Register space much smaller + requires scalar replacement to 
exploit temporal locality

 Register level optimizations include exhibiting instruction level 
parallelism (conflicts with locality)
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Example: Matrix Multiplication

a b

i

j

*

c

=

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b  */

void mmm(double *a, double *b, double *c, int n) {

int i, j, k;

for (i = 0; i < n; i++)

for (j = 0; j < n; j++)

for (k = 0; k < n; k++)

c[i*n+j] += a[i*n + k]*b[k*n + j];

}
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Cache Miss Analysis
 Assume: 

 Matrix elements are doubles

 Cache block = 8 doubles

 Cache size C << n (much smaller than n)

 First iteration:
 n/8 + n = 9n/8 misses

 Afterwards in cache:
(schematic)

*=

n

*=

8 wide
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Cache Miss Analysis
 Assume: 

 Matrix elements are doubles

 Cache block = 8 doubles

 Cache size C << n (much smaller than n)

 Second iteration:
 Again:

n/8 + n = 9n/8 misses

 Total misses:
 9n/8 * n2 = (9/8) * n3

n

*=

8 wide
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Blocked Matrix Multiplication
c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b  */

void mmm(double *a, double *b, double *c, int n) {

int i, j, k;

for (i = 0; i < n; i+=B)

for (j = 0; j < n; j+=B)

for (k = 0; k < n; k+=B)

/* B x B mini matrix multiplications */

for (i1 = i; i1 < i+B; i++)

for (j1 = j; j1 < j+B; j++)

for (k1 = k; k1 < k+B; k++)

c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];

}

a b

i1

j1

*

c

=
c

+

Block size B x B
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Cache Miss Analysis
 Assume: 

 Cache block = 8 doubles

 Cache size C << n (much smaller than n)

 Three blocks       fit into cache: 3B2 < C

 First (block) iteration:
 B2/8 misses for each block

 2n/B * B2/8 = nB/4
(omitting matrix c)

 Afterwards in cache
(schematic)

*=

*=

Block size B x B

n/B blocks
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Cache Miss Analysis
 Assume: 

 Cache block = 8 doubles

 Cache size C << n (much smaller than n)

 Three blocks       fit into cache: 3B2 < C

 Second (block) iteration:
 Same as first iteration

 2n/B * B2/8 = nB/4

 Total misses:
 nB/4 * (n/B)2 = n3/(4B)

*=

Block size B x B

n/B blocks
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Summary

 No blocking: (9/8) * n3

 Blocking: 1/(4B) * n3

 Suggest largest possible block size B, but limit 3B2 < C!
(can possibly be relaxed a bit, but there is a limit for B)

 Reason for dramatic difference:
 Matrix multiplication has inherent temporal locality:

 Input data: 3n2, computation 2n3

 Every array elements used O(n) times!

 But program has to be written properly


