
Carnegie Mellon

Introduction to Computer Systems
15-213/18-243, spring 2009
12th Lecture, Feb. 19th

Instructors:

Gregory Kesden and Markus Püschel

Carnegie Mellon

Last Time

 Program optimization
 Optimization blocker: Memory aliasing

 One solution: Scalar replacement of array accesses that are reused

for (i = 0; i < n; i++) {

b[i] = 0;

for (j = 0; j < n; j++)

b[i] += a[i*n + j];

}

for (i = 0; i < n; i++) {

double val = 0;

for (j = 0; j < n; j++)

val += a[i*n + j];

b[i] = val;

}

Carnegie Mellon

Last Time

 Instruction level parallelism

 Latency versus throughput

Functional
Units

Integer/
Branch

FP
Add

FP
Mult/Div

Load Store
General
Integer

Step 1
1 cycle

Step 2
1 cycle

Step 10
1 cycle

latency cycles/issue

Integer Multiply 10 1

Carnegie Mellon

Last Time

 Consequence

*

*

1 d0

d1

*

d2

*

d3

*

d4

*

d5

*

d6

*

d7

*

*

1 d1

d3

*

d5

*

d7

*

*

*

1 d0

d2

*

d4

*

d6

Twice as fast

Carnegie Mellon

Today

 Memory hierarchy, caches, locality

 Cache organization

 Program optimization:
 Cache optimizations

Carnegie Mellon

Problem: Processor-Memory Bottleneck

Main
Memory

CPU Reg

Processor performance
doubled about
every 18 months Bus bandwidth

evolved much slower

Core 2 Duo:
Can process at least
256 Bytes/cycle
(1 SSE two operand add and mult)

Core 2 Duo:
Bandwidth
2 Bytes/cycle
Latency
100 cycles

Solution: Caches

Carnegie Mellon

Cache

 Definition: Computer memory with short access time
used for the storage of frequently or recently used
instructions or data

Carnegie Mellon

General Cache Mechanics

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized
transfer units

Smaller, faster, more expensive
memory caches a subset of
the blocks

4

4

4

10

10

10

Carnegie Mellon

General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14
Block b is in cache:
Hit!

Carnegie Mellon

General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memory

Request: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
• Replacement policy:

determines which block
gets evicted (victim)

Carnegie Mellon

Cache Performance Metrics

 Miss Rate
 Fraction of memory references not found in cache (misses / accesses)

= 1 – hit rate

 Typical numbers (in percentages):

 3-10% for L1

 can be quite small (e.g., < 1%) for L2, depending on size, etc.

 Hit Time
 Time to deliver a line in the cache to the processor

 includes time to determine whether the line is in the cache

 Typical numbers:

 1-2 clock cycle for L1

 5-20 clock cycles for L2

 Miss Penalty
 Additional time required because of a miss

 typically 50-200 cycles for main memory (Trend: increasing!)

Carnegie Mellon

Lets think about those numbers

 Huge difference between a hit and a miss
 Could be 100x, if just L1 and main memory

 Would you believe 99% hits is twice as good as 97%?
 Consider:

cache hit time of 1 cycle
miss penalty of 100 cycles

 Average access time:

97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles

99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

 This is why “miss rate” is used instead of “hit rate”

Carnegie Mellon

Types of Cache Misses

 Cold (compulsory) miss
 Occurs on first access to a block

 Conflict miss
 Most hardware caches limit blocks to a small subset (sometimes a

singleton) of the available cache slots

 e.g., block i must be placed in slot (i mod 4)

 Conflict misses occur when the cache is large enough, but multiple
data objects all map to the same slot

 e.g., referencing blocks 0, 8, 0, 8, ... would miss every time

 Capacity miss
 Occurs when the set of active cache blocks (working set) is larger

than the cache

Carnegie Mellon

Why Caches Work

 Locality: Programs tend to use data and instructions with
addresses near or equal to those they have used recently

 Temporal locality:
 Recently referenced items are likely

to be referenced again in the near future

 Spatial locality:
 Items with nearby addresses tend

to be referenced close together in time

block

block

Carnegie Mellon

Example: Locality?

 Data:
 Temporal: sum referenced in each iteration

 Spatial: array a[] accessed in stride-1 pattern

 Instructions:
 Temporal: cycle through loop repeatedly

 Spatial: reference instructions in sequence

 Being able to assess the locality of code is a crucial skill
for a programmer

sum = 0;

for (i = 0; i < n; i++)

sum += a[i];

return sum;

Carnegie Mellon

Locality Example #1

int sum_array_rows(int a[M][N])

{

int i, j, sum = 0;

for (i = 0; i < M; i++)

for (j = 0; j < N; j++)

sum += a[i][j];

return sum;

}

Carnegie Mellon

Locality Example #2

int sum_array_cols(int a[M][N])

{

int i, j, sum = 0;

for (j = 0; j < N; j++)

for (i = 0; i < M; i++)

sum += a[i][j];

return sum;

}

Carnegie Mellon

Locality Example #3

int sum_array_3d(int a[M][N][N])

{

int i, j, k, sum = 0;

for (i = 0; i < M; i++)

for (j = 0; j < N; j++)

for (k = 0; k < N; k++)

sum += a[k][i][j];

return sum;

}

 How can it be fixed?

Carnegie Mellon

Memory Hierarchies

 Some fundamental and enduring properties of hardware and
software systems:
 Faster storage technologies almost always cost more per byte and

have lower capacity

 The gaps between memory technology speeds are widening

 True of registers ↔ DRAM, DRAM ↔ disk, etc.

 Well-written programs tend to exhibit good locality

 These properties complement each other beautifully

 They suggest an approach for organizing memory and
storage systems known as a memory hierarchy

Carnegie Mellon

An Example Memory Hierarchy

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(tapes, distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers

Main memory holds disk blocks
retrieved from local disks

off-chip L2
cache (SRAM)

L1 cache holds cache lines retrieved from
L2 cache

CPU registers hold words retrieved from
L1 cache

L2 cache holds cache lines retrieved
from main memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
costlier
per byte

Carnegie Mellon

Examples of Caching in the Hierarchy

Hardware0On-Chip TLBAddress translationsTLB

Web browser10,000,000Local diskWeb pagesBrowser cache

Web cache

Network buffer
cache

Buffer cache

Virtual Memory

L2 cache

L1 cache

Registers

Cache Type

Web pages

Parts of files

Parts of files

4-KB page

64-bytes block

64-bytes block

4-byte words

What is Cached?

Web proxy
server

1,000,000,000Remote server disks

OS100Main memory

Hardware1On-Chip L1

Hardware10Off-Chip L2

AFS/NFS client10,000,000Local disk

Hardware+OS100Main memory

Compiler0CPU core

Managed ByLatency (cycles)Where is it Cached?

Carnegie Mellon

Memory Hierarchy: Core 2 Duo

Disk

Main
Memory

L2
unified
cache

L1
I-cache

L1
D-cache

CPU Reg

2 B/cycle8 B/cycle16 B/cycle 1 B/30 cyclesThroughput:

Latency: 100 cycles14 cycles3 cycles millions

~4 MB

32 KB

~4 GB ~500 GB

Not drawn to scale

L1/L2 cache: 64 B blocks

Carnegie Mellon

Today

 Memory hierarchy, caches, locality

 Cache organization

 Program optimization:
 Cache optimizations

Carnegie Mellon

General Cache Organization (S, E, B)

E = 2e lines per set

S = 2s sets

set

line

0 1 2 B-1tagv

valid bit
B = 2b bytes per cache block (the data)

Cache size:
S x E x B data bytes

Carnegie Mellon

Cache Read

E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit
B = 2b bytes per cache block (the data)

t bits s bits b bits

Address of word:

tag set
index

block
offset

data begins at this offset

• Locate set
• Check if any line in set

has matching tag
• Yes + line valid: hit
• Locate data starting

at offset

Carnegie Mellon

Example: Direct Mapped Cache (E = 1)

S = 2s sets

Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

Carnegie Mellon

Example: Direct Mapped Cache (E = 1)
Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

match: assume yes = hitvalid? +

block offset

tag

Carnegie Mellon

Example: Direct Mapped Cache (E = 1)
Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

match: assume yes = hitvalid? +

int (4 Bytes) is here

block offset

No match: old line is evicted and replaced

Carnegie Mellon

Example
int sum_array_rows(double a[16][16])

{

int i, j;

double sum = 0;

for (i = 0; i < 16; i++)

for (j = 0; j < 16; j++)

sum += a[i][j];

return sum;

}

32 B = 4 doubles

assume: cold (empty) cache,
a[0][0] goes here

int sum_array_cols(double a[16][16])

{

int i, j;

double sum = 0;

for (j = 0; i < 16; i++)

for (i = 0; j < 16; j++)

sum += a[i][j];

return sum;

} blackboard

Ignore the variables sum, i, j

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

find set

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes = hit

block offset

tag

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

match both

valid? + match: yes = hit

block offset

short int (2 Bytes) is here

No match:
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), …

Carnegie Mellon

Example
int sum_array_rows(double a[16][16])

{

int i, j;

double sum = 0;

for (i = 0; i < 16; i++)

for (j = 0; j < 16; j++)

sum += a[i][j];

return sum;

}

32 B = 4 doubles

assume: cold (empty) cache,
a[0][0] goes here

int sum_array_rows(double a[16][16])

{

int i, j;

double sum = 0;

for (j = 0; i < 16; i++)

for (i = 0; j < 16; j++)

sum += a[i][j];

return sum;

}
blackboard

Ignore the variables sum, i, j

Carnegie Mellon

What about writes?

 Multiple copies of data exist:
 L1, L2, Main Memory, Disk

 What to do one a write-hit?
 Write-through (write immediately to memory)

 Write-back (defer write to memory until replacement of line)

 Need a dirty bit (line different from memory or not)

 What to do on a write-miss?
 Write-allocate (load into cache, update line in cache)

 Good if more writes to the location follow

 No-write-allocate (writes immediately to memory)

 Typical
 Write-through + No-write-allocate

 Write-back + Write-allocate

Carnegie Mellon

Software Caches are More Flexible

 Examples

 File system buffer caches, web browser caches, etc.

 Some design differences

 Almost always fully associative

 so, no placement restrictions

 index structures like hash tables are common

 Often use complex replacement policies

 misses are very expensive when disk or network involved

 worth thousands of cycles to avoid them

 Not necessarily constrained to single “block” transfers

 may fetch or write-back in larger units, opportunistically

Carnegie Mellon

Today

 Memory hierarchy, caches, locality

 Cache organization

 Program optimization:
 Cache optimizations

Carnegie Mellon

Optimizations for the Memory Hierarchy

 Write code that has locality
 Spatial: access data contiguously

 Temporal: make sure access to the same data is not too far apart in
time

 How to achieve?
 Proper choice of algorithm

 Loop transformations

 Cache versus register level optimization:
 In both cases locality desirable

 Register space much smaller + requires scalar replacement to
exploit temporal locality

 Register level optimizations include exhibiting instruction level
parallelism (conflicts with locality)

Carnegie Mellon

Example: Matrix Multiplication

a b

i

j

*

c

=

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */

void mmm(double *a, double *b, double *c, int n) {

int i, j, k;

for (i = 0; i < n; i++)

for (j = 0; j < n; j++)

for (k = 0; k < n; k++)

c[i*n+j] += a[i*n + k]*b[k*n + j];

}

Carnegie Mellon

Cache Miss Analysis
 Assume:

 Matrix elements are doubles

 Cache block = 8 doubles

 Cache size C << n (much smaller than n)

 First iteration:
 n/8 + n = 9n/8 misses

 Afterwards in cache:
(schematic)

*=

n

*=

8 wide

Carnegie Mellon

Cache Miss Analysis
 Assume:

 Matrix elements are doubles

 Cache block = 8 doubles

 Cache size C << n (much smaller than n)

 Second iteration:
 Again:

n/8 + n = 9n/8 misses

 Total misses:
 9n/8 * n2 = (9/8) * n3

n

*=

8 wide

Carnegie Mellon

Blocked Matrix Multiplication
c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */

void mmm(double *a, double *b, double *c, int n) {

int i, j, k;

for (i = 0; i < n; i+=B)

for (j = 0; j < n; j+=B)

for (k = 0; k < n; k+=B)

/* B x B mini matrix multiplications */

for (i1 = i; i1 < i+B; i++)

for (j1 = j; j1 < j+B; j++)

for (k1 = k; k1 < k+B; k++)

c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];

}

a b

i1

j1

*

c

=
c

+

Block size B x B

Carnegie Mellon

Cache Miss Analysis
 Assume:

 Cache block = 8 doubles

 Cache size C << n (much smaller than n)

 Three blocks fit into cache: 3B2 < C

 First (block) iteration:
 B2/8 misses for each block

 2n/B * B2/8 = nB/4
(omitting matrix c)

 Afterwards in cache
(schematic)

*=

*=

Block size B x B

n/B blocks

Carnegie Mellon

Cache Miss Analysis
 Assume:

 Cache block = 8 doubles

 Cache size C << n (much smaller than n)

 Three blocks fit into cache: 3B2 < C

 Second (block) iteration:
 Same as first iteration

 2n/B * B2/8 = nB/4

 Total misses:
 nB/4 * (n/B)2 = n3/(4B)

*=

Block size B x B

n/B blocks

Carnegie Mellon

Summary

 No blocking: (9/8) * n3

 Blocking: 1/(4B) * n3

 Suggest largest possible block size B, but limit 3B2 < C!
(can possibly be relaxed a bit, but there is a limit for B)

 Reason for dramatic difference:
 Matrix multiplication has inherent temporal locality:

 Input data: 3n2, computation 2n3

 Every array elements used O(n) times!

 But program has to be written properly

