
Carnegie Mellon

Introduction to Computer Systems
15-213/18-243, spring 2009
18th Lecture, Mar. 24th

Instructors:

Gregory Kesden and Markus Püschel

Carnegie Mellon

Last Time: Address Translation

Virtual page number (VPN) Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address

Physical address

Valid Physical page number (PPN)

Page table
base register

(PTBR)

Page table Page table address
for process

Valid bit = 0:
page not in memory

(page fault)

Carnegie Mellon

Last Time: Page Fault

MMU Cache/
Memory

CPU
VA

CPU Chip
PTEA

PTE

1

2

3

4

5

Disk

Page fault handler

Victim page

New page

Exception

6

7

Carnegie Mellon

TLB Hit

MMU
Cache/
Memory

PA

Data

CPU
VA

CPU Chip

PTE

1

2

4

5

A TLB hit eliminates a memory access

TLB

VPN 3

Carnegie Mellon

TLB Miss

MMU
Cache/
MemoryPA

Data

CPU
VA

CPU Chip

PTE

1

2

5

6

TLB

VPN

4

PTEA

3

A TLB miss incurs an add’l memory access (the PTE)
Fortunately, TLB misses are rare

Carnegie Mellon

Today

 Virtual memory (VM)
 Multi-level page tables

 Linux VM system

 Case study: VM system on P6

Carnegie Mellon

Multi-Level Page Tables

 Given:
 4KB (212) page size
 48-bit address space
 4-byte PTE

 Problem:
 Would need a 256 GB page table!

 248 * 2-12 * 22 = 238 bytes

 Common solution
 Multi-level page tables

 Example: 2-level page table

 Level 1 table: each PTE points to a page table

 Level 2 table: each PTE points to a page
(paged in and out like other data)

 Level 1 table stays in memory

 Level 2 tables paged in and out

Level 1

Table

...

Level 2

Tables

...

Carnegie Mellon

A Two-Level Page Table Hierarchy
Level 1

page table

...

Level 2

page tables

VP 0

...

VP 1023

VP 1024

...

VP 2047

Gap

0

PTE 0

...

PTE 1023

PTE 0

...

PTE 1023

1023 null
PTEs

PTE 1023 1023
unallocated

pages

VP 9215

Virtual

memory

(1K - 9)
null PTEs

PTE 0

PTE 1

PTE 2 (null)

PTE 3 (null)

PTE 4 (null)

PTE 5 (null)

PTE 6 (null)

PTE 7 (null)

PTE 8

2K allocated VM pages
for code and data

6K unallocated VM pages

1023 unallocated pages

1 allocated VM page
for the stack

Carnegie Mellon

Translating with a k-level Page Table

VPN 1

0p-1n-1

VPOVPN 2 ... VPN k

PPN

0p-1m-1

PPOPPN

Virtual Address

Physical Address

... ...

Level 1
page table

Level 2
page table

Level k
page table

Carnegie Mellon

Today

 Virtual memory (VM)
 Multi-level page tables

 Linux VM system

 Case study: VM system on P6

Carnegie Mellon

vm_next

vm_next

Linux Organizes VM as Collection of “Areas”

task_struct
mm_struct

pgdmm

mmap

vm_area_struct

vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

process virtual memory

text

data

shared libraries

0

0x08048000

0x0804a020

0x40000000

 pgd:
 Page directory address

 vm_prot:
 Read/write permissions for

this area

 vm_flags
 Shared with other processes

or private to this process

vm_flags

vm_flags

vm_flags

Carnegie Mellon

Linux Page Fault Handling

 Is the VA legal?
 = Is it in an area defined

by a vm_area_struct?

 If not (#1), then signal
segmentation violation

 Is the operation legal?
 i.e., Can the process

read/write this area?

 If not (#2), then signal
protection violation

 Otherwise
 Valid address (#3):

handle fault

write

read

read
1

2

3

vm_next

vm_next

vm_area_struct

vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

process virtual memory

text

data

shared libraries

vm_flags

vm_flags

vm_flags

Carnegie Mellon

Memory Mapping

 Creation of new VM area done via “memory mapping”
 Create new vm_area_struct and page tables for area

 Area can be backed by (i.e., get its initial values from) :
 Regular file on disk (e.g., an executable object file)

 Initial page bytes come from a section of a file

 Nothing (e.g., .bss)

 First fault will allocate a physical page full of 0's (demand-zero)

 Once the page is written to (dirtied), it is like any other page

 Dirty pages are swapped back and forth between a special
swap file.

 Key point: no virtual pages are copied into physical memory
until they are referenced!
 Known as “demand paging”

 Crucial for time and space efficiency

Carnegie Mellon

User-Level Memory Mapping
void *mmap(void *start, int len,

int prot, int flags, int fd, int offset)

len bytes

start

(or address
chosen by kernel)

Process virtual memoryDisk file specified by
file descriptor fd

len bytes

offset

(bytes)

Carnegie Mellon

User-Level Memory Mapping

void *mmap(void *start, int len,

int prot, int flags, int fd, int offset)

 Map len bytes starting at offset offset of the file specified
by file description fd, preferably at address start

 start: may be 0 for “pick an address”

 prot: PROT_READ, PROT_WRITE, ...

 flags: MAP_PRIVATE, MAP_SHARED, ...

 Return a pointer to start of mapped area (may not be start)

 Example: fast file-copy
 Useful for applications like Web servers that need to quickly copy files.

 mmap()allows file transfers without copying into user space.

Carnegie Mellon

mmap() Example: Fast File Copy
#include <unistd.h>

#include <sys/mman.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

/*

* a program that uses mmap to copy

* the file input.txt to stdout

*/

int main() {

struct stat stat;

int i, fd, size;

char *bufp;

/* open the file & get its size*/

fd = open("./input.txt", O_RDONLY);

fstat(fd, &stat);

size = stat.st_size;

/* map the file to a new VM area */

bufp = mmap(0, size, PROT_READ,

MAP_PRIVATE, fd, 0);

/* write the VM area to stdout */

write(1, bufp, size);

exit(0);

}

Carnegie Mellon

Exec() Revisited

kernel code/data/stack

Memory mapped region
for shared libraries

runtime heap (via malloc)

program text (.text)

initialized data (.data)

uninitialized data (.bss)

stack

forbidden
0

%esp
process
VM

brk

0xc0…

physical memorysame for
each

process

process-specific data
structures

(page tables,
task and mm structs)

kernel
VM

To run a new program p in the
current process using exec():
 Free vm_area_struct’s and page

tables for old areas

 Create new vm_area_struct’s and
page tables for new areas

 Stack, BSS, data, text, shared libs.

 Text and data backed by ELF
executable object file

 BSS and stack initialized to zero

 Set PC to entry point in .text

 Linux will fault in code, data pages
as needed.data

.text

p

demand-zero

demand-zero

libc.so

.data

.text

Carnegie Mellon

Fork() Revisited
 To create a new process using fork():

 Make copies of the old process’s mm_struct, vm_area_struct’s, and
page tables.

 At this point the two processes share all of their pages.

 How to get separate spaces without copying all the virtual pages
from one space to another?

– “Copy on Write” (COW) technique.

 Copy-on-write

 Mark PTE's of writeable areas as read-only

 Writes by either process to these pages will cause page faults

 Flag vm_area_struct’s for these areas as private “copy-on-write”

– Fault handler recognizes copy-on-write, makes a copy of the
page, and restores write permissions.

 Net result:
 Copies are deferred until absolutely necessary (i.e., when one of the

processes tries to modify a shared page).

Carnegie Mellon

Memory System Summary
 L1/L2 Memory Cache

 Purely a speed-up technique

 Behavior invisible to application programmer and (mostly) OS

 Implemented totally in hardware

 Virtual Memory
 Supports many OS-related functions

 Process creation, task switching, protection

 Software

 Allocates/shares physical memory among processes

 Maintains high-level tables tracking memory type, source, sharing

 Handles exceptions, fills in hardware-defined mapping tables

 Hardware

 Translates virtual addresses via mapping tables, enforcing permissions

 Accelerates mapping via translation cache (TLB)

Carnegie Mellon

Further Reading
 Intel TLBs:

 Application Note:
“TLBs, Paging-Structure Caches, and Their Invalidation”, April 2007

Carnegie Mellon

Today

 Virtual memory (VM)
 Multi-level page tables

 Linux VM system

 Case study: VM system on P6

Carnegie Mellon

Intel P6 (Bob Colwell’s Chip, CMU Alumni)

 Internal designation for successor to Pentium
 Which had internal designation P5

 Fundamentally different from Pentium
 Out-of-order, superscalar operation

 Resulting processors
 Pentium Pro (1996)

 Pentium II (1997)

 L2 cache on same chip

 Pentium III (1999)

 The freshwater fish machines

 Saltwater fish machines: Pentium 4
 Different operation, but similar memory system

 Abandoned by Intel in 2005 for P6-based Core 2 Duo

Carnegie Mellon

P6 Memory System

bus interface unit

DRAM

external
system bus
(e.g. PCI)

instruction

fetch unit

L1

i-cache

L2

cache

cache bus

L1

d-cache

inst

TLB

data

TLB

processor package

32 bit address space

4 KB page size

L1, L2, and TLBs
• 4-way set associative

Inst TLB
• 32 entries
• 8 sets

Data TLB
• 64 entries
• 16 sets

L1 i-cache and d-cache
• 16 KB
• 32 B line size
• 128 sets

L2 cache
• unified
• 128 KB–2 MB

Carnegie Mellon

Review of Abbreviations

 Components of the virtual address (VA)
 TLBI: TLB index

 TLBT: TLB tag

 VPO: virtual page offset

 VPN: virtual page number

 Components of the physical address (PA)
 PPO: physical page offset (same as VPO)

 PPN: physical page number

 CO: byte offset within cache line

 CI: cache index

 CT: cache tag

Carnegie Mellon

Overview of P6 Address Translation

CPU

VPN VPO

20 12

TLBT TLBI

416

virtual address (VA)

...

TLB (16 sets, 4 entries/set)
VPN1 VPN2

1010

PDE PTE

PDBR

PPN PPO

20 12

Page tables

TLB

miss

TLB

hit

physical

address (PA)

result

32

...

CT CO

20 5

CI

7

L2 and DRAM

L1 (128 sets, 4 lines/set)

L1

hit

L1

miss

Carnegie Mellon

P6 2-level Page Table Structure

 Page directory
 1024 4-byte page directory entries

(PDEs) that point to page tables

 One page directory per process.

 Page directory must be in memory
when its process is running

 Always pointed to by PDBR

 Page tables:
 1024 4-byte page table entries (PTEs)

that point to pages.

 Page tables can be paged in and out.

page
directory

...

Up to 1024
page tables

1024

PTEs

1024

PTEs

1024

PTEs

...

1024

PDEs

Carnegie Mellon

P6 Page Directory Entry (PDE)

Page table physical base address Avail G PS A CD WT U/S R/W P=1

Page table physical base address: 20 most significant bits of physical page table
address (forces page tables to be 4KB aligned)

Avail: These bits available for system programmers

G: global page (don’t evict from TLB on task switch)

PS: page size 4K (0) or 4M (1)

A: accessed (set by MMU on reads and writes, cleared by software)

CD: cache disabled (1) or enabled (0)

WT: write-through or write-back cache policy for this page table

U/S: user or supervisor mode access

R/W: read-only or read-write access

P: page table is present in memory (1) or not (0)

31 12 11 9 8 7 6 5 4 3 2 1 0

Available for OS (page table location in secondary storage) P=0

31 01

Carnegie Mellon

P6 Page Table Entry (PTE)

Page physical base address Avail G 0 D A CD WT U/S R/W P=1

Page base address: 20 most significant bits of physical page address (forces
pages to be 4 KB aligned)

Avail: available for system programmers

G: global page (don’t evict from TLB on task switch)

D: dirty (set by MMU on writes)

A: accessed (set by MMU on reads and writes)

CD: cache disabled or enabled

WT: write-through or write-back cache policy for this page

U/S: user/supervisor

R/W: read/write

P: page is present in physical memory (1) or not (0)

31 12 11 9 8 7 6 5 4 3 2 1 0

Available for OS (page location in secondary storage) P=0

31 01

Carnegie Mellon

Representation of VM Address Space

 Simplified Example
 16 page virtual address space

 Flags
 P: Is entry in physical memory?

 M: Has this part of VA space been
mapped?

Page Directory

PT 3

P=1, M=1

P=1, M=1

P=0, M=0

P=0, M=1

•
•
•
•

P=1, M=1

P=0, M=0

P=1, M=1

P=0, M=1

•
•
•
•

P=1, M=1

P=0, M=0

P=1, M=1

P=0, M=1

•
•
•
•

P=0, M=1

P=0, M=1

P=0, M=0

P=0, M=0

•
•
•
•

PT 2

PT 0

Page 0

Page 1

Page 2

Page 3

Page 4

Page 5

Page 6

Page 7

Page 8

Page 9

Page 10

Page 11

Page 12

Page 13

Page 14

Page 15

Mem Addr

Disk Addr

In Mem

On Disk

Unmapped

Carnegie Mellon

P6 TLB Translation

CPU

VPN VPO

20 12

TLBT TLBI

416

virtual address (VA)

...

TLB (16 sets, 4 entries/set)
VPN1 VPN2

1010

PDE PTE

PDBR

PPN PPO

20 12

Page tables

TLB

miss

TLB

hit

physical

address (PA)

result

32

...

CT CO

20 5

CI

7

L2 and DRAM

L1 (128 sets, 4 lines/set)

L1

hit

L1

miss

Carnegie Mellon

P6 TLB

 TLB entry (not all documented, so this is speculative):

 V: indicates a valid (1) or invalid (0) TLB entry

 TLBTag: disambiguates entries cached in the same set

 PPN: translation of the address indicated by index & tag

 G: page is “global” according to PDE, PTE

 S: page is “supervisor-only” according to PDE, PTE

 W: page is writable according to PDE, PTE

 D: PTE has already been marked “dirty” (once is enough)

 Structure of the data TLB:
 16 sets, 4 entries/set

PPN TLBTag W

11620

S

1

G

1

V

1

D

1

entry entry entry entry

entry entry entry entry

entry entry entry entry

...

set 0
set 1

set 15

Carnegie Mellon

Translating with the P6 TLB

1. Partition VPN into TLBT
and TLBI.

2. Is the PTE for VPN cached
in set TLBI?

3. Yes: Check permissions,
build physical address

4. No: Read PTE (and PDE if
not cached) from memory
and build physical address

CPU

VPN VPO

20 12

TLBT TLBI

416

virtual address

PDE PTE

...
TLB

miss

TLB

hit

page table translation

PPN PPO

20 12

physical
address

1
2

3

4

Carnegie Mellon

P6 TLB Translation

CPU

VPN VPO

20 12

TLBT TLBI

416

virtual address (VA)

...

TLB (16 sets, 4 entries/set)
VPN1 VPN2

1010

PDE PTE

PDBR

PPN PPO

20 12

Page tables

TLB

miss

TLB

hit

physical

address (PA)

result

32

...

CT CO

20 5

CI

7

L2 and DRAM

L1 (128 sets, 4 lines/set)

L1

hit

L1

miss

Carnegie Mellon

Translating with the P6 Page Tables
(case 1/1)

 Case 1/1: page
table and page
present

 MMU Action:
 MMU builds

physical address
and fetches data
word

 OS action
 None

VPN

VPN1 VPN2

PDE

PDBR

PPN PPO

20 12

20

VPO

12

p=1 PTE p=1

Data page

data

Page
directory

Page table

Mem

Disk

Carnegie Mellon

Translating with the P6 Page Tables
(case 1/0)

VPN

VPN1 VPN2

PDE

PDBR

20

VPO

12

p=1 PTE p=0

Page
directory

Page table

Mem

Disk

Data page

data

 Case 1/0: page table
present, page missing

 MMU Action:
 Page fault exception

 Handler receives the
following args:

 %eip that caused fault

 VA that caused fault

 Fault caused by non-
present page or page-
level protection
violation

– Read/write

– User/supervisor

Carnegie Mellon

Translating with the P6 Page Tables
(case 1/0, cont.)

VPN

VPN1 VPN2

PDE

PDBR

PPN PPO

20 12

20

VPO

12

p=1 PTE p=1

Data page

data

Page
directory

Page table

Mem

Disk

 OS Action:
 Check for a legal virtual

address.

 Read PTE through PDE.

 Find free physical page
(swapping out current
page if necessary)

 Read virtual page from
disk into physical page

 Adjust PTE to point to
physical page, set p=1

 Restart faulting
instruction by returning
from exception handler

Carnegie Mellon

Translating with the P6 Page Tables
(case 0/1)

VPN

VPN1 VPN2

PDE

PDBR

20

VPO

12

p=0

PTE p=1

Page
directory

Page table

Mem

Disk

Data page

data

 Case 0/1: page table
missing, page present

 Introduces consistency
issue
 Potentially every page-

out requires update of
disk page table

 Linux disallows this
 If a page table is

swapped out, then swap
out its data pages too

Carnegie Mellon

Translating with the P6 Page Tables
(case 0/0)

VPN

VPN1 VPN2

PDE

PDBR

20

VPO

12

p=0

PTE p=0

Page
directory

Page table

Mem

Disk

Data page

data

 Case 0/0: page table
and page missing

 MMU Action:
 Page fault

Carnegie Mellon

Translating with the P6 Page Tables
(case 0/0, cont.)

VPN

VPN1 VPN2

PDE

PDBR

20

VPO

12

p=1 PTE p=0

Page
directory

Page table

Mem

Disk

Data page

data

 OS action:
 Swap in page table

 Restart faulting
instruction by
returning from
handler

 Like case 0/1 from
here on.
 Two disk reads

Carnegie Mellon

P6 L1 Cache Access

CPU

VPN VPO

20 12

TLBT TLBI

416

virtual address (VA)

...

TLB (16 sets, 4 entries/set)
VPN1 VPN2

1010

PDE PTE

PDBR

PPN PPO

20 12

Page tables

TLB

miss

TLB

hit

physical

address (PA)

result

32

...

CT CO

20 5

CI

7

L2 and DRAM

L1 (128 sets, 4 lines/set)

L1

hit

L1

miss

Carnegie Mellon

L1 Cache Access

 Partition physical
address: CO, CI, and CT

 Use CT to determine if
line containing word at
address PA is cached in
set CI

 No: check L2

 Yes: extract word at
byte offset CO and
return to processor

physical

address (PA)

data

32

...

CT CO

20 5

CI

7

L2 and DRAM

L1 (128 sets, 4 lines/set)

L1

hit

L1

miss

Carnegie Mellon

Speeding Up L1 Access

 Observation
 Bits that determine CI identical in virtual and physical address

 Can index into cache while address translation taking place

 Generally we hit in TLB, so PPN bits (CT bits) available next

 “Virtually indexed, physically tagged”

 Cache carefully sized to make this possible

Physical address (PA)

CT CO

20 5

CI

7

Virtual address (VA) VPN VPO

20 12

PPOPPN

Address

Translation

No

Change CI

Tag Check

Carnegie Mellon

x86-64 Paging

 Origin
 AMD’s way of extending x86 to 64-bit instruction set

 Intel has followed with “EM64T”

 Requirements
 48-bit virtual address

 256 terabytes (TB)

 Not yet ready for full 64 bits

– Nobody can buy that much DRAM yet

– Mapping tables would be huge

– Multi-level array map may not be the right data structure

 52-bit physical address

 Requires 64-bit table entries

 Keep traditional x86 4KB page size

 (4096 bytes per PT) / (8 bytes per PTE) = only 512 entries per page

Carnegie Mellon

x86-64 Paging

PM4LE

BR

Page Map

Table

VPN1

9

VPO

12
Virtual address

PPN PPO

40 12

Physical address

VPN2 VPN3 VPN4

9 9 9

PDPE

Page

Directory

Pointer

Table

PDE

Page

Directory

Table

PTE

Page

Table

