Floating Point

15-213: Introduction to Computer Systems

Recitation 2: Monday, Jan 27th, 2014

Agenda

- Floating point representation
 - Binary fractions
 - IEEE standard
 - Example problems

Reminder

■ Data Lab is due Thursday, Jan 30th

Floating Point - Fractions in Binary

- Representation
 - Bits to right of "binary point" represent fractional powers of 2
 - Represents rational number:

■ Single precision: 32 bits

S	ехр	frac
1	8-bits	23-bits

■ Double precision: 64 bits

S	ехр	frac
1	11-bits	52-bits

■ Extended precision: 80 bits (Intel only)

S	ехр	frac
1	15-bits	63 or 64-bits

- What does this mean?
 - We can think of floating point as binary scientific notation
 - The number represented is essentially (sign * frac * 2^{exp})
- **Example:**
 - Assume our floating point format has no sign bit, k = 3
 exponent bits, and n=2 fraction bits
 - What does 0b10010 represent?

- What does this mean?
 - We can think of floating point as binary scientific notation
 - The number represented is essentially (sign * frac * 2^{exp})
- **Example:**
 - Assume our floating point format has no sign bit, k = 3
 exponent bits, and n=2 fraction bits
 - What does 0b10010 represent? 3

- Bias
 - exp is unsigned; needs a bias to represent negative numbers
 - Bias = 2^{k-1} 1, where k is the number of exponent bits
 - Can also be thought of as bit pattern 0b011...111

Normalized	Denormalized	
0 < exp < (2	exp = 0	
Implied leading 1	Leading 0	
E = exp - Bias	E = 1 - Bias.	
Denser near origin	Evenly spaced	
Represents large numbers	Represents small numbers	

 When converting frac/int => float, assume normalized until proven otherwise

- \blacksquare Special Cases (exp = 2^k -1)
 - Infinity
 - Result of an overflow during calculation or division by 0
 - exp = 2^k-1 (i.e. 1111...1), frac = 0
 - Not a Number (NaN)
 - Result of illegal operation (sqrt(-1), inf inf, inf * 0)
 - $\exp = 2^{k}-1$, frac != 0
 - Keep in mind these special cases are not the same

■ Round to even

- Why? Avoid statistical bias of rounding up or down on half.
- How? Like this:

1.01	^	truncate	1.01
1.01	I	below half; round down	1.01
1.01	I	interesting case; round to even	1.10
1.01		above half; round up	1.10
1.10	**	truncate	1.10
1.10	-	below half; round down	1.10
1.10		Interesting case; round to even	1.10
1.10	1	above half; round up	1.11
1.11	V	truncate	1.11

Rounding

1.BBGRXXX

Guard bit: LSB of

result

Round bit: 1st bit removed

Sticky bit: OR of remaining b

Round up conditions

Round = 1, Sticky = 1 → > 0.5

■ Guard = 1, Round = 1, Sticky = 0 → Round to even

Value	Fraction	GRS	Incr?	Rounded
128	1.0000000	000	N	1.000
15	1.1010000	100	N	1.101
17	1.0001000	010	N	1.000
19	1.0011000	110	Υ	1.010
138	1.0001010	011	Υ	1.001
63	1.1111100	111	Υ	10.000

Number to Float (S EEEE FFF, 8 bit FP)

Convert: 27

Number to Float

- Convert: 27
- Positive so we know S = 0
- Turn 27 to bits:

$$27_{10} = 11011_2$$

Normalized value so lets fit in the leading 1

$$1.1011_{2}$$

 But we only have 3 fraction bits so we must round.
 Digits after rounding equal half, last rounding digit is 1 so we round up.

$$1.1011_2 = 1.110_2$$

• Thus F = 110

Number to Float

Calculate the exponent :

$$11100_2 \rightarrow 1.1100_2 \times 2^4$$

Calculate the exponent bits:

$$E = Exponent - Bias \rightarrow 4 = Exponent - 7 \rightarrow Exponent = 4 + 7 = 11$$

So the exponent is 11, in bits:

$$Exponent = 1011_2$$

Answer: 0 1011 110₂

Convert: 1 1001 010₂

- Convert: 1 1001 010₂
 - Sign bit tells us it is negative
 - We know it is normalized (non-zero exponent) so lets figure out the exponent:

$$1001_2 = 9_{10}$$

$$E = Exponent - Bias \rightarrow 9 - 7 = 2$$

- Now the fraction (remember the leading 1):
- Put it all together: 1.0102
- Answer: -5 $1.010_2 \times 2^2 = 101_2 = 5_{10}$

Convert: 0 0000 110

- Convert: 0 0000 110
 - Sign bit tells us its positive
 - It is denormalized because of the 0 exponent so lets figure out the exponent:

$$E = -Bias + 1 \rightarrow -7 + 1 = -6$$

Now the fraction (remember the leading 0):

$$0.110 \times 2^{-6}$$

• Put it all together:

$$0.110_2 \times 2^{-6} = 0.000000110_2$$

Floating Point - Example

■ For EEE FF, 5 bit FP, complete the following table:

Value	Floating Point	Rounded Value
9/32		
8		
9		
	000 10	
19		

Floating Point - Example

■ For EEE FF, 5 bit FP, complete the following table:

Value	Floating Point	Rounded Value
9/32	001 00	1/4
8	110 00	8
9	110 00	8
1/8	000 10	
19	111 00	inf

Floating point encoding. In this problem, you will work with floating point numbers based on the IEEE floating point format. We consider two different 6-bit formats:

Format A:

- There is one sign bit s.
- There are k = 3 exponent bits. The bias is $2^{k-1} 1 = 3$.
- There are n = 2 fraction bits.

Format B:

- There is one sign bit s.
- There are k=2 exponent bits. The bias is $2^{k-1}-1=1$.
- There are n = 3 fraction bits.

For formats A and B, please write down the binary representation for the following (use round-to-even). Recall that for denormalized numbers, E = 1 – bias. For normalized numbers, E = e – bias.

Value	Format A Bits	Format B Bits
Zero	0 000 00	0 00 000
One		
1/2		
11/8		

Solution

Floating Point Recap

- Floating point = $(-1)^s$ M 2^E
- MSB is sign bit s
- Bias = $2^{(k-1)}$ 1 (k is num of exp bits)
- Normalized
 - exp ≠ 000...0 and exp ≠ 111...1
 - M = 1.frac
 - $E = \exp Bias$
- Denormalized
 - exp = 000....0
 - M = 0.frac
 - E = Bias + 1

Floating Point Recap

- Special Cases
 - +/- Infinity: exp = 111...1 and frac = 000...0
 - +/- NaN: exp = 111...1 and frac ≠ 000...0
 - \bullet +0: s = 0, exp = 000...0 and frac = 000...0
 - \bullet -0: s = 1, exp = 000...0 and frac = 000...0
- Round towards even when half way (i.e. when LSB of result = 0)

Questions/comments?