Floating Point

15-213: Introduction to Computer Systems Recitation 2: Monday, Jan 27th, 2014

Agenda

■ Floating point representation

- **Binary fractions**
- **ELEE** standard
- **Example problems**

Reminder

■ Data Lab is due Thursday, Jan 30th

Floating Point – Fractions in Binary

- Bits to right of "binary point" represent fractional powers of 2^i
- Represents rational number:

$$
\sum_{k=-j}^{k} b_k \times 2^k
$$

■ Single precision: 32 bits

■ Double precision: 64 bits

s exp frac 1 11-bits 52-bits

■ Extended precision: 80 bits (Intel only)

- \blacksquare What does this mean?
	- We can think of floating point as binary scientific notation
	- The number represented is *essentially* (sign * frac * 2^{exp})
- **■** Example:
	- Assume our floating point format has **no sign bit, k = 3 exponent bits, and n=2 fraction bits**
	- **E** What does 0b10010 represent?

- \blacksquare What does this mean?
	- We can think of floating point as binary scientific notation
	- The number represented is *essentially* (sign * frac * 2^{exp})
- **■** Example:
	- Assume our floating point format has **no sign bit, k = 3 exponent bits, and n=2 fraction bits**
	- What does 0b10010 represent? **3**

Bias

- exp is unsigned; needs a bias to represent negative numbers
- **Bias** = 2^{k-1} 1, where k is the number of exponent bits
- Can also be thought of as bit pattern 0b011...111

• When converting frac/int => float, assume normalized until proven otherwise

- \blacksquare Special Cases (exp = 2^k-1)
	- \blacksquare Infinity
		- Result of an overflow during calculation or division by 0
		- $exp = 2^k 1$ (i.e. 1111...1), frac = 0
	- Not a Number (NaN)
		- **Result of illegal operation (sqrt(-1), inf inf, inf** $*$ **0)**
		- **•** $exp = 2^{k} 1$, frac $!= 0$
	- Keep in mind these special cases are not the same

Round to even

- **Why? Avoid statistical bias of rounding up or down on half.**
- **E** How? Like this:

■ Round up conditions

- Round = 1, Sticky = $1 \rightarrow$ > 0.5
- Guard = 1, Round = 1, Sticky = $0 \rightarrow$ Round to even

Number to Float (S EEEE FFF, 8 bit FP)

▪ Convert: 27

Number to Float

- Convert: 27
- **Positive so we know** $S = 0$
- \blacksquare Turn 27 to bits:

 $27_{10} = 11011_2$

- Normalized value so lets fit in the leading 1 1.1011_2
- But we only have 3 fraction bits so we must round. Digits after rounding equal half, last rounding digit is 1 so we round up.

 $1.1011₂ = 1.110₂$

• Thus $F = 110$

Number to Float

• Calculate the exponent :

```
11100_2 \rightarrow 1.1100_2 x 2^4
```
• Calculate the exponent bits:

 $E = Exponent - Bias \rightarrow 4 = Exponent - 7 \rightarrow Exponent = 4 + 7 = 11$

• So the exponent is 11, in bits:

 $Exponent = 1011₂$

• Answer: 0 1011 110₂

Convert: 11001010_2

- Convert: $1\,1001\,010_2$
- Sign bit tells us it is negative
- We know it is normalized (non-zero exponent) so lets figure out the exponent:

 $1001_2 = 9_{10}$

 $E = Exponent - Bias \rightarrow 9 - 7 = 2$

- Now the fraction (remember the leading 1):
- 1.010_2 • Put it all together:
- $1.010_2 x 2^2 = 101_2 = 5_{10}$ Answer: -5

Convert: 0 0000 110

- **Convert: 0 0000 110**
	- Sign bit tells us its positive
	- It is denormalized because of the 0 exponent so lets figure out the exponent:

 $E = -Bias + 1 \rightarrow -7 + 1 = -6$

• Now the fraction (remember the leading 0):

 0.110×2^{-6}

• Put it all together:

 $0.110_2 \times 2^{-6} = 0.000000110_2$

Floating Point – Example

■ For EEE FF, 5 bit FP, complete the following table:

Floating Point – Example

■ For EEE FF, 5 bit FP, complete the following table:

Floating point encoding. In this problem, you will work with floating point numbers based on the IEEE floating point format. We consider two different 6-bit formats:

Format A:

- There is one sign bit s .
- There are $k = 3$ exponent bits. The bias is $2^{k-1} 1 = 3$.
- There are $n = 2$ fraction bits.

Format B:

- There is one sign bit s .
- There are $k = 2$ exponent bits. The bias is $2^{k-1} 1 = 1$.
- There are $n = 3$ fraction bits.

For formats A and B, please write down the binary representation for the following (use round-to-even). Recall that for denormalized numbers, $E = 1 - \text{bias}$. For normalized numbers, $E = e - \text{bias}$.

Solution

 $|A|$ $|B|$ One | 0 011 00 | 0 01 000 Exact in both formats 1/2 | 0 010 00 | 0 00 100 Exact in both formats, norm in A, denorm in B 11/8 | 0 011 10 | 0 01 011 Format A round to even, format B exact

Floating Point Recap

- **E** Floating point = $(-1)^s$ M 2^E
- \blacksquare MSB is sign bit s
- Bias = $2^{(k-1)}$ 1 (k is num of \exp bits)
- **■** Normalized
	- \bullet exp \neq 000...0 and exp \neq 111...1
	- $M = 1.$ frac
	- \blacksquare E = \exp Bias
- **■** Denormalized
	- \bullet exp = 000....0
	- $M = 0$.frac
	- $E = \text{Bias} + 1$

Floating Point Recap

■ Special Cases

- \bullet +/- Infinity: \exp = 111...1 and frac = 000...0
- $+/-$ NaN: exp = 111...1 and $frac \neq 000...0$
- \bullet +0: s = 0, \exp = 000...0 and $\text{frac} = 000...0$
- \bullet -0: s = 1, \exp = 000...0 and frac = 000...0
- \blacksquare Round towards even when half way (i.e. when LSB of result $= 0$)

Questions/comments?