C Boot Camp

Oct. 1, 2017

Aarohi
Fernando
Jiayi
Satoru
Stephen

Carnegie Mellon

SECOND EDITION

THE

PROGRAMMING
LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

IALL SOFTWARE SERIES

Carnegie Mellon

Agenda

« C Basics
. MAN, | SUCK AT THIS GAME.
= Debugging Tools / Demo CAN YOU GIVE ME.
. Appendix A FEW POINTERS?
pg Standard Li (Oreasomac
andard Library 0373636825.
getopt | HATE Yov
stdio.h %
stdlib.h g ‘g
string.h

Carnegie Mellon

C Basics Handout

ssh <andrewid>@shark.ics.cs.cmu.edu

cd ~/private

wget http://cs.cmu.edu/~213/activities/cbootcamp.tar.gz
tar xvpf cbootcamp.tar.gz

cd cbootcamp

make

« Contains useful, self-contained C examples
« Slides relating to these examples will have the file

names in the top-right corner!

http://cs.cmu.edu/~213/activities/cbootcamp.tar.gz

C Basics

« The minimum you must know to do well in this class
= You have seen these concepts before
- Make sure you remember them.

= Summary:
= Pointers/Arrays/Structs/Casting
= Memory Management
- Function pointers/Generic Types
= Strings

Carnegie Mellon

filel.c file2.c

Variable Declarations & Qualifiers i
: i Rt ; i
« Global Variables: L. v
. Defined outside functions, seen by all files f’?':";‘:_/”d'a” :
. Use “extern” keyword to use a >

global variable defined in another file
« Const Variables:

global variable from one file can be used in other using extern keyword.

. For variables that won't change e
. Data stored in read-only data section { static int count - 0;
« otatic Variables: e E
- Forlocals, keeps value between invocations "¢
- USE SPARINGLY §§EO§ " fan ()]
- Note: static has a different meaning when }
referring to functions (not visible outside of
object file) Gt

12

Casting

= Can convert a variable to a different type

Integer Casting:
- Signed <-> Unsigned: Keep Bits - Re-Interpret
- Small -> Large: Sign-Extend MSB, preserve value

« Cautions:
= Cast Explicitly: int x = (int) y instead of int x =y
- Casting Down: Truncates data
- Cast Up: Upcasting and dereferencing a pointer causes undefined
memory access
m Rules for Casting Between Integer Types

Carnegie Mellon

Pointers 2 L

m Stores address of a value in memory
m e.g. int*, char*, int**, etc
m Access the value by dereferencing (e.g. *a).
Can be used to read or write a value to given

address
m Dereferencing NULL causes undefined

behavior (usually a segfault)

Carnegie Mellon

Pointers

1000 1001

m Pointer to type A references a block

of sizeof (A) bytes mechar— 4
m Get the address of a value in
memory with the ‘&’ operator ool A
m Pointers can be aliased, or pointed

to same address e —

Carnegie Mellon

Pointer Arithmetic ./poilnters

« Can add/subtract from an address to get a new address
= Only perform when absolutely necessary (i.e., malloclab)
= Result depends on the pointer type

« A+i,where Ais apointer= 0x100, iisan int
« 1nt* A A+i1 = 0x100 + sizeof(int) * 1 = 0x100 + 4 * 1
« Char* A A+1i = 0x100 + sizeof(char) * i = 0x100 + 1 * i
« int** Al A+i = 0x100 + sizeof (int*) * i = 0x100 + 8 * 1

« Rule of thumb: explicitly cast pointer to avoid confusion
. Prefer((char*) (A) + i)to(a + i), evenif A hastype char*

Carnegie Mellon

Pointer Arithmetic ./pointers

m The ‘pointers’ program demonstrates how how values of
different sizes can be written to and read back from the
memory.

m The examples are to show you how the ~type~ of the
pointer affects arithmetic done on the pointer.

m \When adding x to a pointer A (i.e. A + x), the result is
really (A + x * sizeof(TYPE_OF_PTR_A)).

m Run the ‘pointers’ program
$./pointers

Call by Value vs Call by Reference

« Call-by-value: Changes made to arguments passed to a function
aren’t reflected in the calling function

« Call-by-reference: Changes made to arguments passed to a
function are reflected in the calling function

« Cis a call-by-value language

=« 10 cause changes to values outside the function, use pointers
- Do not assign the pointer to a different value (that won’t be reflected!)
. Instead, dereference the pointer and assign a value to that address

void swap (int* a, int* b) { int x = 42;
int temp = *a; int y = 54;
*a = *Db; swap (&x, &y);
*b = temp; printf (“%d\n”, x); // 54

} printf (“$d\n”, vy); // 42

Carnegie Mellon

Arrays/Strings

« Arrays: fixed-size collection of elements of the same type
= Can allocate on the stack or on the heap
int A[10]; // A is array of 10 int’s on the stack
int* A = calloc (10, sizeof(int)); // A is array of 10
int’s on the heap

« Strings: Null-character (\O’) terminated character arrays
= Null-character tells us where the string ends
- All standard C library functions on strings assume null-termination.

Structs ./structs

« Collection of values placed under one name in a single

block of memory
- Can put structs, arrays in other structs

« Given a struct instance, access the fields using the *.’

operator
« Given a struct pointer, access the fields using the ‘->’
operator
struct inner s { struct outer s ({ outer s out inst;
int 1i; char ar[10]; out inst.ar[0] = ‘a’;
char c; struct inner s in; out inst.in.i = 42;

}i }i outer s* out ptr = &out inst;
out ptr->in.c = ‘b’;

Carnegie Mellon

C Program Memory Layout

high address | command-line arguments
| and environment vanables

heap

uninitialized data initialized to

(bss) zero by exeo
initialized data
. read from
{ program file
text by exec

low address J

Stack vs Heap vs Data

« Local variables and function arguments are placed on the

stack

- deallocated after the variable leaves scope

= do not return a pointer to a stack-allocated variable!

= do not reference the address of a variable outside its scope!

=« Memory blocks allocated by calls to malloc/calloc are
placed on the heap
= Globals, constants are placed in data section

« Example:
= // ais a pointer on the stack to a memory block on the heap
- int* a = malloc(sizeof(int));

Malloc, Free, Calloc

« Handle dynamic memory allocation on HEAP

= void* malloc (size t size):
. allocate block of memory of size bytes
= does not initialize memory
m void* calloc (size t num, size t size) :
. allocate block of memory for array of num elements, each size bytes long
= initializes memory to zero
» void free(void* ptr):
= frees memory block, previously allocated by malloc, calloc, realloc, pointed
by ptr
= use exactly once for each pointer you allocate
« size argument:
= Should be computed using the sizeof operator
= Sizeof: takes a type and gives you its size
« €.g., sizeof(int), sizeof (int¥*)

Carnegie Mellon

mem mgmt.c
Memory Management Rules ./mem valgrind.sh

= malloc whatyou free, free whatyoumalloc
- client should free memory allocated by client code
- library should free memory allocated by library code

= Number mallocs = Number frees
= Number mallocs > Number Frees: definitely a memory leak
= Number mallocs < Number Frees: definitely a double free

« Free a malloc’ed block exactly once
= Should not dereference a freed memory block

= Only malloc when necessary
» Persistent, variable sized data structures
= Concurrent accesses (we’ll get there later in the semester)

Carnegie Mellon

Valgrind

Terminal

« Find memory errors, detect memory leaks [e vew wmns we e

[pwells2@newcell ~/junk]$ valgrind ./memleak

] Common errors: ==16738== Memcheck, a memory error detector

==16738== Copyright (C) 2002-2010, and GNU GPL'd, by Julian Seward et al.

. lllegal read/write errors i S et e o e
= Use of uninitialized values il T P
- lllegal frees TI673 Address ExAc20068 15 bytes after 8 BLock of size 48 alloc'd
. Overlapping source/destination addresses }Egg ot orpiilg e
= Typical solutions R T AL
y Did you allocate enough memory? Tio7ia | at oxaosdse: malioc (v replace avioc.coze)
- Did you accidentally free stack e, emnEs sl
variables/something twice? 6730 [ST
. Did you initialize all your variables? 36730e] | atal Nasp wpmges A1 ulkgcs 8 froen; 800 tn witoceind
Did use something that you just free’d? Siofow s
- --Ieak check=full Taeree] persibty Lost: @ byves tn & block
. Memcheck gives details for each UTsen] | eampreiseds.® bytes i 8 Blacks

definitely/possibly lost memory block (Where it | o TR

»=16738== For counts of detected and suppressed errors, rerun with: -v

was a”ocated ==16738== ERROR SUMMARY: 36 errors from 2 contexts (suppressed: 4 from 4)

[pwells2@newcell ~/junk]s]

Carnegie Mellon

Debugging

GDB

GDB

= No longer stepping through assembly!

Some GDB commands are different:
= Si/si— step/ next
= break file.c:line_num
. disas — list
= print <any_var_name> (in current frame)

« Use TUI mode (layout src)
- Nice display for viewing source/executing
commands
= Buggy, so only use TUI mode to step
through lines (no continue / finish)

Additional Topics

e Headers files and header guards
e Macros
e Appendix (C libraries)

Carnegie Mellon

Header Files

Includes C declarations and macro definitions to be shared

across multiple files
= Only include function prototypes/macros; implementation code goes in .c file!

« Usage: #include <header.h>
#include <1ib>for standard libraries (eg #include <string.h>)
= #include “file”for your source files (eg #include “header.h”)

= Never include .c files (bad practice)

// list.h // list.c // stacks.h

struct list node { #include “list.h” #include “list.h”
int data; struct stack head {
struct list node* next; node new list () { node top;

// implementation node bottom;
}i
typedef struct stack head* stack

I
typedef struct list node* node; }

void add node (int e, node 1) {

// implementation stack new stack();
} void push(int e, stack S);

node new list();
void add node(int e, node 1);

Header Guards

= Double-inclusion problem: include same header file twice
//grandfather.h //father.h //child.h

#include “grandfather.h” #include “father.h”
#include “grandfather.h”

Error: child.h includes grandfather.h twice

« Solution: header guard ensures single inclusion

//grandfather.h //father.h //child.h

#ifndef GRANDFATHER H #ifndef FATHER H #include “father.h”
#define GRANDFATHER H #define FATHER H #include “grandfather.h”
#endif #endif

Okay: child.h only includes grandfather.h once

- Carnegie Mellon _
Macros ./macros

= A way to replace a name with its macro definition
- No function call overhead, type neutral
- Think “find and replace” like in a text editor

= Uses:
. defining constants (INT_MAX, ARRAY_SIZE)
. defining simple operations (MAX(a b))
. 122-style contracts (REQUIRES, ENSURES)

« Warnings:
- Use parentheses around arguments/expressions, to avoid problems after
substitution

- Do not pass expressions with side effects as arguments to macros

#define INT MAX Ox7FFFFFFFF

#define MAX (A, B) ((A) > (B) ? (A) : (B))
#define REQUIRES (COND) assert (COND)

#define WORD SIZE 4

#define NEXT_WORD(a) ((char*) (a) + WORD_SIZE)

Carnegie Mellon

C Libraries

Carnegie Mellon

string.h: Common String/Array Methods

= One the most useful libraries available to c
you
. . THS B GREAT, BUT YOU FORGOT TO APD
= Used heavily in shell/proxy labs (Ammw%;g&mwwm}
« Important usage details regarding V
arguments:

= prefixes: str -> strings, mem -> arbitrary
memory blocks.

= ensure that all strings are ‘\ 0’ terminated!

= ensure that dest is large enough to store src!

= ensure that src actually contains n bytes!

= ensure that src/dest don’t overlap!

string.h: Common String/Array Methods

« Copying:
void *memcpy (void *dest, void *src, size t n):copy n bytes of

src into dest, return dest
= char *strcpy(char *dest, char *src) :copy src string into dest,
return dest. Make sure dest is large enough to contain src.
=« Concatenation:
char *strncat (char *dest, char *src, size t n):append copy

of src to end of dest reading at most n bytes, return dest
= char *strcat (char *dest, char *src) works for arbitrary length

strings, but has the safety issues you've seen in attacklab

string.h: Common String/Array Methods (Continued)

= Comparison:

= 1int strncmp (char *strl, char *str2, size t n):compare at
most n bytes of str1, str2 by character (based on ASCII value of each
character, then string length), return comparison result
str1 < str2: -1,
str1 == str2: 0,
str1 > str2: 1

= 1nt strcmp (char *strl, char *str2):compare str1 to str2. Make sure
each string is long enough to be safely compared.

string.h: Common String/Array Methods (Continued)

=« Searching:
= char *strstr (char *strl, char *str2):return pointerto
first occurrence of str2 in str1, else NULL
= char *strtok (char *str, char *delimiters):tokenize
str according to delimiter characters provided in delimiters.
return the one token for each strtok call, using str = NULL

« Other:

. size t strlen (const char *str): returns length of the
string (up to, but not including the “\ 0’ character)
« void *memset (void *ptr, int val, size t n):setfirstn
bytes of memory block addressed by ptr to val
For setting bytes only. Don’t use it to set or initialize int arrays,
for example.

Carnegie Mellon

stdlib.h: General Purpose Functions

« Dynamic memory allocation:
« malloc, calloc, free
« String conversion:
= 1int atoi(char *str) :parse string into integral value (return O if not parsed)
= System Calls:
« void exit (int status) :terminate calling process, return status to parent process
« void abort () : aborts process abnormally
= Searching/Sorting:
= provide array, array size, element size, comparator (function pointer)
=« Dbsearch: returns pointer to matching element in the array
= gsort: sorts the array destructively
« Integer arithmetic:
= 1int abs (int n) :returns absolute value of n

= lypes:

» size t:unsigned integral type (store size of any object)

stdio.h

Another really useful
library.

Used heavily in
cache/shell/proxy labs
Used for:

= argument parsing

- file handling

= input/output

printf, a fan favorite, comes
from this library!

Text terminal

[Keyboard

[Display

#0 stdin

#1 stdout

Carnegie Mellon

stdio.h: Common I/O Methods

« FILE *fopen (char *filename, char *mode): open the file with
specified flename in specified mode (read, write, append, etc), associate
it with stream identified by returned file pointer

=« 1int fscanf (FILE *stream, char *format, ...):readdata
from the stream, store it according to the parameter format at the
memory locations pointed at by additional arguments.

« 1int fclose (FILE *stream) : close the file associated with stream

« 1int fprintf (FILE *stream, char *format, ...) : writethe
C string pointed at by format to the stream, using any additional
arguments to fill in format specifiers.

m fgets

Getopt

Carnegie Mellon

Need to include unistd.htouse int main(int argc, char **argv)

Used to parse command-line
arguments.
Typically called in a loop to
retrieve arguments
Switch statement used to handle
options

= colon indicates required argument

= optarg is set to value of option
argument

Returns -1 when no more
arguments present

See recitation 6 slides for more
examples

{

int opt, x;
/* looping over arguments */
while ((opt=getopt (argc,argv,"x:"))>0) {
switch (opt) {
case 'x':
x = atoil (optarqg);
break;
default:
printf (“wrong argument\n");

break;

Note about Library Functions

= These functions can return error codes
= malloc could fail
« 1nt x;
1f ((x = malloc(sizeof(int))) == NULL)
printf (“Malloc failed!!!\n”);
- a file couldn’t be opened
= a string may be incorrectly parsed

= Remember to check for the error cases and handle the
errors accordingly

= may have to terminate the program (eg malloc fails)
= Mmay be able to recover (user entered bad input)

Carnegie Mellon

Style

m Documentation
m file header, function header, comments
m Variable Names & Magic Numbers

B new cache size isgood, not new cacheSize orsize
m Use #define CACHESIZE 128

m Modularity
m helper functions
m Error Checking
m malloc, library functions...
m Memory & File Handling
m free memory, close files
m Check style guide for detailed information

http://www.cs.cmu.edu/~213/codeStyle.html

