
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recitation 10: Malloc Lab

Instructors

April 1, 2019

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Administrivia

⬛ Please fill out mid-semester feedback!
▪ Course Feedback (https://bit.ly/2I1WliR)
▪ Individual TA Feedback (https://bit.ly/2UiigZN)

⬛ Malloc checkpoint due Tuesday, April 9! yeeT

⬛ Malloc final due the week, Thursday, April 18! yooT

⬛ Malloc Bootcamp:

Sunday, April 7 at Rashid Auditorium, 7-9PM �
▪ We will cover ✨fun and flirty✨ ways to succeed post-malloc

checkpoint!

▪ Tell your friends to come (if they’re in 213 (if they want to come (don’t force your friends to do

things they don’t want to do that’s not what friends are for)))

https://docs.google.com/forms/d/e/1FAIpQLScGnOD4PGfoQUu96341w4HU8Z1CDXlmu_gyJ0IDsay0ZsGxZw/viewform
https://bit.ly/2I1WliR
https://docs.google.com/document/u/1/d/e/2PACX-1vQPt3mK8tLOhl1PXKZuPBxAQv07RPNlKdTpiWX_85Fv7Gf1NIbTnT_vKpEFV76X2WGXg3pjUr_Oyumb/pub?embedded=true
https://bit.ly/2UiigZN

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Outline

⬛ Concept

⬛ How to choose blocks

⬛ Metadata

⬛ Debugging / GDB Exercises

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What is malloc?

⬛ A function to allocate memory during runtime
(dynamic memory allocation).
▪ More useful when the size or number of allocations is

unknown until runtime (e.g. data structures)

⬛ The heap is a segment of memory addresses
reserved almost exclusively for malloc to use.
▪ Your code directly manipulates the bytes of memory in

this section.

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concept

⬛ Overall, malloc does three things:

1. Organizes all blocks and stores information about them
in a structured way.

2. Uses the structure made to choose an appropriate
location to allocate new memory.

3. Updates the structure when the user frees a block of
memory.

This process occurs even for a complicated algorithm like
segregated lists.

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concept (Implicit list)

1. Connects and organizes all blocks and stores information
about them in a structured way, typically implemented
as a singly linked list

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concept (Implicit list)

2. Uses the structure made to choose an appropriate
location to allocate new memory.

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concept (Implicit list)

3. Updates the structure when the user frees a block of
memory.

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concept (Implicit list)

3. Updates the structure when the user frees a block of
memory.

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Goals

⬛ Run as fast as possible

⬛ Waste as little memory as possible

⬛ Seemingly conflicting goals, but with the library malloc
call cleverness you can do very well in both areas!

⬛ The simplest implementation is the implicit list.
mm.c uses this method.
▪ Unfortunately…

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

This is pretty
slow… most
explicit list
implementations
get above 10000
Kops/sec

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Allocation methods in a nutshell

⬛ Implicit list: a list is implicitly formed by jumping between
blocks, using knowledge about their sizes.

⬛ Explicit list: Free blocks explicitly point to other blocks,
like in a linked list.
▪ Understanding explicit lists requires understanding implicit lists

⬛ Segregated list: Multiple linked lists, each containing
blocks in a certain range of sizes.
▪ Understanding segregated lists requires understanding explicit lists

Allocated Free Allocated Free Allocated

Free Free

Free Free

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Choices

⬛ What kind of implementation to use?

▪ Implicit list, explicit list, segregated lists, binary tree methods, etc.

▪ You can use specialized strategies depending on the size of allocations

▪ Adaptive algorithms are fine, though not necessary to get 100%.

▪ Don’t hard-code for individual trace files - you’ll get no credit/code
deductions!

⬛ What fit algorithm to use?

▪ Best fit: choose the smallest block that is big enough to fit the requested
allocation size

▪ First fit / next fit: search linearly starting from some location, and pick the
first block that fits.

▪ Which is faster? Which uses less memory?

▪ “Good enough” fit: a blend between the two

⬛ This lab has many more ways to get an A+ than, say, Cache Lab Part 2

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Finding a Best Block

⬛ Suppose you have implemented the explicit list approach
▪ You were using best fit with explicit lists

⬛ You experiment with using segregated lists instead.
Still using best fits.
▪ Will your memory utilization score improve?

Note: you don’t have to implement seglists and run mdriver to
answer this. That’s, uh, hard to do within one recitation session.

▪ What other advantages does segregated lists provide?

⬛ Losing memory because of the way you choose your free
blocks is called external fragmentation.

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Metadata

⬛ All blocks need to store some data about themselves in
order for malloc to keep track of them (e.g. headers)
▪ This takes memory too…
▪ Losing memory for this reason is called internal fragmentation.

⬛ What data might a block need?
▪ Does it depend on the malloc implementation you use?

▪ Is it different between free and allocated blocks?

⬛ Can we use the extra space in free blocks?
▪ Or do we have to leave the space alone?

⬛ How can we overlap two different types of data at the
same location?

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

In a perfect world…
 Setting up the blocks, metadata, lists… etc (500 LoC)

+ Finding and allocating the right blocks (500 LoC)

+ Updating your heap structure when you free (500 LoC) =

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

In reality…
 Setting up the blocks, metadata, lists… etc (500 LoC)

+ Finding and allocating the right blocks (500 LoC)

+ Updating your heap structure when you free (500 LoC)

+ One bug, somewhere lost in those 1500 LoC =

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Common errors you might see

⬛ Garbled bytes
▪ Problem: overwriting data in an allocated block

▪ Solution: remembering data lab and the good ol’ days finding
where you’re overwriting by stepping through with gdb

⬛ Overlapping payloads
▪ Problem: having unique blocks whose payloads overlap in memory

▪ Solution: literally print debugging everywhere finding where you’re
overlapping by stepping through with gdb

⬛ Segmentation fault
▪ Problem: accessing invalid memory

▪ Solution: crying a little finding where you’re accessing invalid
memory by stepping through with gdb

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

⬛ Try running $ make
▪ If you look closely, our code compiles your malloc

implementation with the -O3 flag.

▪ This is an optimization flag. -O3 makes your code run as efficiently
as the compiler can manage, but also makes it horrible for
debugging (almost everything is “optimized out”).

▪ For malloclab, we’ve provide you a driver, mdriver-dbg, that
not only enables debugging macros, but compiles your code with
-O0. This allows more useful information to be displayed in GDB

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity: Coalescing

⬛ What’s wrong with this coalesce_block()?

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Activity: Coalescing

⬛ What’s wrong with this coalesce_block()?

P R A N K E D

happy april fool’s
C >>> SML
#functionsarepointers
#functionsarewelldocumented

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

The *Real* Activity: GDB Practice

⬛ Using GDB well in malloclab can save you HOURS1, 2 of debugging
time
▪ Average 20 hours using GDB for “B” on malloclab

▪ Average 23 hours not using GDB for “B” on malloclab

⬛ Form pairs
wget https://www.cs.cmu.edu/~213/activities/s19-rec-malloc.tar
tar xvf s19-rec-malloc.tar
cd s19-rec-malloc
make

⬛ Two buggy mdrivers

* Average time is based on Summer 2016 survey results

https://www.cs.cmu.edu/~213/activities/s19-rec-malloc.tar

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Debugging Guidelines

Locate a segfault
- run
- <>
- backtrace
- disas

Reproduce results of a trace
- Run with gdb

- gdb args

You might want to...If you have this problem...

Ran into segfault

Trace results don’t match yours

Don’t know what trace output
should be

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Debugging mdriver

$ gdb --args ./mdriver -c traces/syn-mix-short.rep

(gdb) run

(gdb) backtrace

(gdb) list

Optional: Type Ctrl-X Ctrl-A to see the source code. Don’t
linger there for long, since this visual mode is buggy. Type
that key combination again to go back to console mode.

1) What function is listed on the top of backtrace?

2) What line of code crashed?

3) How did that line cause the crash?

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Debugging mdriver

⬛ (gdb) x /gx block
▪ Shows the memory contents within the block

▪ In particular, look for the header.

⬛ (gdb) print *block
▪ Shows struct contents

Remember the output from (gdb) bt?
⬛ (gdb) frame 1

▪ Jumps to the function one level down the call stack (aka the
function that called write_footer)

▪ Ctrl-X, Ctrl-A again if you want to see visuals

⬛ What was the caller function? What is its purpose?
▪ Was it writing to block or block_next when it crashed?

Alternative: (gdb) print *(block_t *) <address>

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thought process while debugging

⬛ write_footer crashed because it got the wrong
address for the footer…

⬛ The address was wrong because the header of the block
was some garbage value
▪ Since write_footer uses get_size(block) after all

⬛ But why in the world does the header contain garbage??
▪ The crash happened in place, which basically splits a free block

into two and uses the first one to store things.

▪ Hm, block_next would be the new block created after the split?
The one on the right?

▪ The header would be in the middle of the original free block
actually. Wait, but I wrote a new header before I wrote the footer!

▪ Right? …Oh, I didn’t. Darn.

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Heap consistency checker

⬛ mm-2.c activates debug mode, and so mm_checkheap
runs at the beginning and end of many of its functions.

⬛ The next bug will be a total nightmare to find without this
heap consistency checker*.

*Even though the checker in mm-2.c is short and buggy

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Now you try debugging this - second example!

$ gdb --args ./mdriver-2 -c
traces/syn-array-short.rep

(gdb) run

Yikes… what error are we getting?

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Now you try debugging this - second example!

$ gdb --args ./mdriver-2 -c traces/syn-array-short.rep
(gdb) run

Yikes… what error are we getting?

~ g a r b l e d b y t e s ~

* an accurate representation of what’s
actually going on in your blocks

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Now you try debugging this - second example!

(gdb) watch *0x8000026d0 /* Track from first garbled payload */

(gdb) run
(gdb) continue
(gdb) continue /* Keep going until coalesce_block */

(gdb) backtrace
(gdb) list

Ah, it seems like nothing’s amiss…

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Running with mdriver-2-dbg...

(gdb) file mdriver-2-dbg
(gdb) run
(gdb) continue
…
(gdb) list

⬛ Let’s run it with mdriver-2-dbg, which has a lower optimization
- will give us more insight, like the stack trace below

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Running with mdriver-2-dbg...

(gdb) print prev_alloc
(gdb) $1 = <optimized out>

%rip, they’re optimized out! We have to change the optimization
level to get what we truly want.

⬛ Now try printing out the values of prev_alloc / next_alloc...

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Running with mdriver-2-dbg...

$ make clean
$ make
$ gdb --args ./mdriver-2-dbg -d 2 -c

traces/syn-mix-short.rep
(gdb) b mm-2.c:450 /* Cut to the chase… */
(gdb) run
(gdb) continue
…
(gdb) print next_alloc
(gdb) $1 = true /* SUCCESS! */

⬛ Go into your Makefile (vim Makefile) => change “COPT_DBG =
-O0” so that all local variables are preserved

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Strategy - Suggested Plan for Completing
Malloc

0. Start writing your checkheap!

1. Get an explicit list implementation to work with proper
coalescing and splitting

3. Get to a segregated list implementation to improve utilization

4. Work on optimizations (each has its own challenges!)

- Remove footers

- Decrease minimum block size

- Reduce header sizes

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Strategy - Suggested Plan for Completing
Malloc

0. Start writing your checkheap!

1. Get an explicit list implementation to work with proper
coalescing and splitting

3. Get to a segregated list implementation to improve utilization

4. Work on optimizations (each has its own challenges!)

- Remove footers

- Decrease minimum block size

- Reduce header sizes

Keep writing your checkheap!

Keep writing your checkheap!

Keep writing your checkheap!

Keep writing your checkheap!

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

MallocLab Checkpoint

⬛ Due next Tuesday!

⬛ Checkpoint should take a bit less than half of the time you
spend overall on the lab.

⬛ Read the write-up. Slowly. Carefully.

⬛ Use GDB - watch, backtrace

⬛ Ask us for debugging help
▪ Only after you implement mm_checkheap though! You gotta learn

how to understand your own code - help us help you!

please write checkheap
or we will scream

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Appendix: Advanced GDB Usage

⬛ backtrace: Shows the call stack

⬛ frame: Lets you go to one of the levels in the call stack

⬛ list: Shows source code

⬛ print <expression>:
▪ Runs any valid C command, even something with side effects like

mm_malloc(10) or mm_checkheap(1337)

⬛ watch <expression>:
▪ Breaks when the value of the expression changes

⬛ break <function / line> if <expression>:
▪ Only stops execution when the expression holds true

⬛ Ctrl-X Ctrl-A for visualization

