
Carnegie Mellon

1

14-513 18-613

Carnegie Mellon

2

Synchronization: Advanced

15-213/18-213/14-513/15-513/18-613:
Introduction to Computer Systems

26th Lecture, Nov. 21, 2019

Carnegie Mellon

3

Reminder: Semaphores
¢ Semaphore: non-negative global integer synchronization

variable

¢ Manipulated by P and V operations:
§ P(s): [while (s == 0); s--;]

§ Dutch for "Proberen" (test)
§ V(s): [s++;]

§ Dutch for "Verhogen" (increment)

¢ OS kernel guarantees that operations between brackets [] are
executed atomically

§ Only one P or V operation at a time can modify s.
§ When while loop in P terminates, only that P can decrement s

¢ Semaphore invariant: (s >= 0)

Carnegie Mellon

4

Review: Using semaphores to protect shared
resources via mutual exclusion
¢ Basic idea:

§ Associate a unique semaphore mutex, initially 1, with each shared
variable (or related set of shared variables)

§ Surround each access to the shared variable(s) with P(mutex) and
V(mutex) operations

mutex = 1

P(mutex)
cnt++
V(mutex)

Carnegie Mellon

5

Review: Using Lock for Mutual Exclusion

¢ Basic idea:
§ Mutex is special case of semaphore that only has value 0 (locked) or 1

(unlocked)
§ Lock(m): [while (m == 0); m=0;]
§ Unlock(m): [m=1]

¢ ~2x faster than using semaphore for this purpose
§ And, more clearly indicates programmer’s intention

mutex = 1

lock(mutex)
cnt++
unlock(mutex)

Carnegie Mellon

6

Review: Producer-Consumer Problem

¢ Common synchronization pattern:
§ Producer waits for empty slot, inserts item in buffer, and notifies consumer
§ Consumer waits for item, removes it from buffer, and notifies producer

¢ Examples
§ Multimedia processing:

§ Producer creates video frames, consumer renders them
§ Event-driven graphical user interfaces

§ Producer detects mouse clicks, mouse movements, and keyboard hits
and inserts corresponding events in buffer

§ Consumer retrieves events from buffer and paints the display

producer
thread

shared
buffer

consumer
thread

Carnegie Mellon

7

Review: Using Semaphores to
Coordinate Access to Shared Resources
¢ Basic idea: Thread uses a semaphore operation to notify

another thread that some condition has become true
§ Use counting semaphores to keep track of resource state.
§ Use binary semaphores to notify other threads.

¢ The Producer-Consumer Problem
§ Mediating interactions between processes that generate

information and that then make use of that information
§ Single entry buffer implemented with two binary semaphores

§ One to control access by producer(s)
§ One to control access by consumer(s)

§ N-entry implemented with semaphores + circular buffer

Carnegie Mellon

8

Today
¢ Using semaphores to schedule shared resources

§ Readers-writers problem
¢ Other concurrency issues

§ Thread safety
§ Races
§ Deadlocks
§ Interactions between threads and signal handling

Carnegie Mellon

9

Readers-Writers Problem

¢ Problem statement:
§ Reader threads only read the object
§ Writer threads modify the object (read/write access)
§ Writers must have exclusive access to the object
§ Unlimited number of readers can access the object

¢ Occurs frequently in real systems, e.g.,
§ Online airline reservation system
§ Multithreaded caching Web proxy

W1

W3

W2

R1

R3

R2

Read/
Write
Access

Read-only
Access

Carnegie Mellon

10

Readers/Writers Examples

W1

W3

W2

R1

R3

R2

W1

W3

W2

R1

R3

R2

Carnegie Mellon

11

Variants of Readers-Writers
¢ First readers-writers problem (favors readers)

§ No reader should be kept waiting unless a writer has already been
granted permission to use the object.

§ A reader that arrives after a waiting writer gets priority over the
writer.

¢ Second readers-writers problem (favors writers)
§ Once a writer is ready to write, it performs its write as soon as

possible
§ A reader that arrives after a writer must wait, even if the writer is

also waiting.

¢ Starvation (where a thread waits indefinitely) is possible
in both cases.

Carnegie Mellon

12

Solution to First Readers-Writers Problem

int readcnt; /* Initially 0 */
sem_t mutex, w; /* Both initially 1 */

void reader(void)
{

while (1) {
P(&mutex);
readcnt++;
if (readcnt == 1) /* First in */

P(&w);
V(&mutex);

/* Reading happens here */

P(&mutex);
readcnt--;
if (readcnt == 0) /* Last out */

V(&w);
V(&mutex);

}
}

void writer(void)
{

while (1) {
P(&w);

/* Writing here */

V(&w);
}

}

Readers: Writers:

rw1.c

Carnegie Mellon

13

Readers/Writers Examples

W1

W3

W2

R1

R3

R2

W1

W3

W2

R1

R3

R2

w = 0
readcnt = 0

W1

W3

W2

R1

R3

R2
w = 1
readcnt = 0

w = 0
readcnt = 2

Carnegie Mellon

14

Solution to First Readers-Writers Problem

int readcnt; /* Initially 0 */
sem_t mutex, w; /* Both initially 1 */

void reader(void)
{

while (1) {
P(&mutex);
readcnt++;
if (readcnt == 1) /* First in */

P(&w);
V(&mutex);

/* Reading happens here */

P(&mutex);
readcnt--;
if (readcnt == 0) /* Last out */

V(&w);
V(&mutex);

}
}

void writer(void)
{

while (1) {
P(&w);

/* Writing here */

V(&w);
}

}

Readers: Writers:

rw1.c

Arrivals: R1 R2 W1 R3

Carnegie Mellon

15

Solution to First Readers-Writers Problem

int readcnt; /* Initially 0 */
sem_t mutex, w; /* Both initially 1 */

void reader(void)
{

while (1) {
P(&mutex);
readcnt++;
if (readcnt == 1) /* First in */

P(&w);
V(&mutex);

/* Reading happens here */

P(&mutex);
readcnt--;
if (readcnt == 0) /* Last out */

V(&w);
V(&mutex);

}
}

void writer(void)
{

while (1) {
P(&w);

/* Writing here */

V(&w);
}

}

Readers: Writers:

rw1.c

Arrivals: R1 R2 W1 R3
R1

Readcnt == 1
W == 0

Carnegie Mellon

16

Solution to First Readers-Writers Problem

int readcnt; /* Initially 0 */
sem_t mutex, w; /* Both initially 1 */

void reader(void)
{

while (1) {
P(&mutex);
readcnt++;
if (readcnt == 1) /* First in */

P(&w);
V(&mutex);

/* Reading happens here */

P(&mutex);
readcnt--;
if (readcnt == 0) /* Last out */

V(&w);
V(&mutex);

}
}

void writer(void)
{

while (1) {
P(&w);

/* Writing here */

V(&w);
}

}

Readers: Writers:

rw1.c

Arrivals: R1 R2 W1 R3
R1

Readcnt == 2
W == 0

R2

Carnegie Mellon

17

Solution to First Readers-Writers Problem

int readcnt; /* Initially 0 */
sem_t mutex, w; /* Both initially 1 */

void reader(void)
{

while (1) {
P(&mutex);
readcnt++;
if (readcnt == 1) /* First in */

P(&w);
V(&mutex);

/* Reading happens here */

P(&mutex);
readcnt--;
if (readcnt == 0) /* Last out */

V(&w);
V(&mutex);

}
}

void writer(void)
{

while (1) {
P(&w);

/* Writing here */

V(&w);
}

}

Readers: Writers:

rw1.c

Arrivals: R1 R2 W1 R3
R1

Readcnt == 2
W == 0

R2

W1

Carnegie Mellon

18

Solution to First Readers-Writers Problem

int readcnt; /* Initially 0 */
sem_t mutex, w; /* Both initially 1 */

void reader(void)
{

while (1) {
P(&mutex);
readcnt++;
if (readcnt == 1) /* First in */

P(&w);
V(&mutex);

/* Reading happens here */

P(&mutex);
readcnt--;
if (readcnt == 0) /* Last out */

V(&w);
V(&mutex);

}
}

void writer(void)
{

while (1) {
P(&w);

/* Writing here */

V(&w);
}

}

Readers: Writers:

rw1.c

Arrivals: R1 R2 W1 R3

R1

Readcnt == 1
W == 0

R2

W1

Carnegie Mellon

19

Solution to First Readers-Writers Problem

int readcnt; /* Initially 0 */
sem_t mutex, w; /* Both initially 1 */

void reader(void)
{

while (1) {
P(&mutex);
readcnt++;
if (readcnt == 1) /* First in */

P(&w);
V(&mutex);

/* Reading happens here */

P(&mutex);
readcnt--;
if (readcnt == 0) /* Last out */

V(&w);
V(&mutex);

}
}

void writer(void)
{

while (1) {
P(&w);

/* Writing here */

V(&w);
}

}

Readers: Writers:

rw1.c

Arrivals: R1 R2 W1 R3

R1

Readcnt == 2
W == 0

R2

W1

R3

Carnegie Mellon

20

Solution to First Readers-Writers Problem

int readcnt; /* Initially 0 */
sem_t mutex, w; /* Both initially 1 */

void reader(void)
{

while (1) {
P(&mutex);
readcnt++;
if (readcnt == 1) /* First in */

P(&w);
V(&mutex);

/* Reading happens here */

P(&mutex);
readcnt--;
if (readcnt == 0) /* Last out */

V(&w);
V(&mutex);

}
}

void writer(void)
{

while (1) {
P(&w);

/* Writing here */

V(&w);
}

}

Readers: Writers:

rw1.c

Arrivals: R1 R2 W1 R3

Readcnt == 1
W == 0

R2

W1

R3

Carnegie Mellon

21

Solution to First Readers-Writers Problem

int readcnt; /* Initially 0 */
sem_t mutex, w; /* Both initially 1 */

void reader(void)
{

while (1) {
P(&mutex);
readcnt++;
if (readcnt == 1) /* First in */

P(&w);
V(&mutex);

/* Reading happens here */

P(&mutex);
readcnt--;
if (readcnt == 0) /* Last out */

V(&w);
V(&mutex);

}
}

void writer(void)
{

while (1) {
P(&w);

/* Writing here */

V(&w);
}

}

Readers: Writers:

rw1.c

Arrivals: R1 R2 W1 R3

Readcnt == 0
W == 1

W1

R3

Carnegie Mellon

22

Other Versions of Readers-Writers
¢ Shortcoming of first solution

§ Continuous stream of readers will block writers indefinitely

¢ Second version
§ Once writer comes along, blocks access to later readers
§ Series of writes could block all reads

¢ FIFO implementation
§ See rwqueue code in code directory
§ Service requests in order received
§ Threads kept in FIFO
§ Each has semaphore that enables its access to critical section

Carnegie Mellon

23

Solution to Second Readers-Writers
Problem int readcnt, writecnt; // Initially 0

sem_t rmutex, wmutex, r, w; // Initially 1
void reader(void)
{

while (1) {
P(&r);
P(&rmutex);
readcnt++;
if (readcnt == 1) /* First in */

P(&w);
V(&rmutex);
V(&r)

/* Reading happens here */

P(&rmutex);
readcnt--;
if (readcnt == 0) /* Last out */

V(&w);
V(&rmutex);

}
}

Carnegie Mellon

24

Solution to Second Readers-Writers
Problem void writer(void)

{
while (1) {

P(&wmutex);
writecnt++;
if (writecnt == 1)

P(&r);
V(&wmutex);

P(&w);
/* Writing here */
V(&w);

P(&wmutex);
writecnt--;
if (writecnt == 0);

V(&r);
V(&wmutex);

}
}

Carnegie Mellon

25

Managing Readers/Writers with FIFO

¢ Idea
§ Read & Write requests are inserted into FIFO
§ Requests handled as remove from FIFO

§ Read allowed to proceed if currently idle or processing read
§ Write allowed to proceed only when idle

§ Requests inform controller when they have completed

¢ Fairness
§ Guarantee very request is eventually handled

R WRWWRRRWR

Time

Requests

Allowed
Concurrency

Carnegie Mellon

26

Readers Writers FIFO Implementation
¢ Full code in rwqueue.{h,c}

/* Queue data structure */
typedef struct {

sem_t mutex; // Mutual exclusion
int reading_count; // Number of active readers
int writing_count; // Number of active writers
// FIFO queue implemented as linked list with tail
rw_token_t *head;
rw_token_t *tail;

} rw_queue_t;

/* Represents individual thread's position in queue */
typedef struct TOK {

bool is_reader;
sem_t enable; // Enables access
struct TOK *next; // Allows chaining as linked list

} rw_token_t;

Carnegie Mellon

27

Readers Writers FIFO Use
¢ In rwqueue-test.c

/* Get write access to data and write */
void iwriter(int *buf, int v)
{

rw_token_t tok;
rw_queue_request_write(&q, &tok);
/* Critical section */
*buf = v;
/* End of Critical Section */
rw_queue_release(&q);

}
/* Get read access to data and read */
int ireader(int *buf)
{

rw_token_t tok;
rw_queue_request_read(&q, &tok);
/* Critical section */
int v = *buf;
/* End of Critical section */
rw_queue_release(&q);
return v;

}

Carnegie Mellon

28

Library Reader/Writer Lock
¢ Data type pthread_rwlock_t
¢ Operations

§ Acquire read lock
Pthread_rwlock_rdlock(pthread_rw_lock_t *rwlock)

§ Acquire write lock
Pthread_rwlock_wrlock(pthread_rw_lock_t *rwlock)

§ Release (either) lock
Pthread_rwlock_unlock(pthread_rw_lock_t *rwlock)

¢ Observation
§ Library must be used correctly!

§ Up to programmer to decide what requires read access and
what requires write access

Carnegie Mellon

29

Today
¢ Using semaphores to schedule shared resources

§ Readers-writers problem

¢ Other concurrency issues
§ Races
§ Deadlocks
§ Thread safety
§ Interactions between threads and signal handling

Carnegie Mellon

30

One Worry: Races
¢ A race occurs when correctness of the program depends on one

thread reaching point x before another thread reaches point y
/* a threaded program with a race */
int main(int argc, char** argv) {

pthread_t tid[N];
int i;
for (i = 0; i < N; i++)

Pthread_create(&tid[i], NULL, thread, &i);
for (i = 0; i < N; i++)

Pthread_join(tid[i], NULL);
return 0;

}

/* thread routine */
void *thread(void *vargp) {

int myid = *((int *)vargp);
printf("Hello from thread %d\n", myid);
return NULL;

}

race.c

Carnegie Mellon

31

Data Race

Carnegie Mellon

32

Race Elimination
¢ Don’t share state

§ E.g., use malloc to generate separate copy of argument for each
thread

¢ Use synchronization primitives to control access to shared
state

norace.c

Carnegie Mellon

33

Today
¢ Using semaphores to schedule shared resources

§ Producer-consumer problem

¢ Other concurrency issues
§ Races
§ Deadlocks
§ Thread safety
§ Interactions between threads and signal handling

Carnegie Mellon

34

A Worry: Deadlock
¢ Def: A process is deadlocked iff it is waiting for a condition

that will never be true.

¢ Typical Scenario
§ Processes 1 and 2 needs two resources (A and B) to proceed
§ Process 1 acquires A, waits for B
§ Process 2 acquires B, waits for A
§ Both will wait forever!

Carnegie Mellon

35

Deadlocking With Semaphores
int main(int argc, char** argv)
{

pthread_t tid[2];
Sem_init(&mutex[0], 0, 1); /* mutex[0] = 1 */
Sem_init(&mutex[1], 0, 1); /* mutex[1] = 1 */
Pthread_create(&tid[0], NULL, count, (void*) 0);
Pthread_create(&tid[1], NULL, count, (void*) 1);
Pthread_join(tid[0], NULL);
Pthread_join(tid[1], NULL);
printf("cnt=%d\n", cnt);
return 0;

}

void *count(void *vargp)
{

int i;
int id = (int) vargp;
for (i = 0; i < NITERS; i++) {

P(&mutex[id]); P(&mutex[1-id]);
cnt++;
V(&mutex[id]); V(&mutex[1-id]);

}
return NULL;

}

Tid[0]:
P(s0);
P(s1);
cnt++;
V(s0);
V(s1);

Tid[1]:
P(s1);
P(s0);
cnt++;
V(s1);
V(s0);

Carnegie Mellon

36

Deadlock Visualized in Progress Graph
Locking introduces the
potential for deadlock:
waiting for a condition that
will never be true

Any trajectory that enters
the deadlock region will
eventually reach the
deadlock state, waiting for
either s0 or s1 to become
nonzero

Other trajectories luck out and
skirt the deadlock region

Unfortunate fact: deadlock is
often nondeterministic (race)

Thread 0

Thread 1

P(s0) V(s0)P(s1) V(s1)

V(s1)

P(s1)

P(s0)

V(s0) Forbidden region
for s0

Forbidden region
for s1

Deadlock
state

Deadlock
region

s0=s1=1

Carnegie Mellon

37

Deadlock

Carnegie Mellon

38

Avoiding Deadlock
int main(int argc, char** argv)
{

pthread_t tid[2];
Sem_init(&mutex[0], 0, 1); /* mutex[0] = 1 */
Sem_init(&mutex[1], 0, 1); /* mutex[1] = 1 */
Pthread_create(&tid[0], NULL, count, (void*) 0);
Pthread_create(&tid[1], NULL, count, (void*) 1);
Pthread_join(tid[0], NULL);
Pthread_join(tid[1], NULL);
printf("cnt=%d\n", cnt);
return 0;

}

void *count(void *vargp)
{

int i;
int id = (int) vargp;
for (i = 0; i < NITERS; i++) {

P(&mutex[0]); P(&mutex[1]);
cnt++;
V(&mutex[id]); V(&mutex[1-id]);

}
return NULL;

}

Acquire shared resources in same order

Tid[0]:
P(s0);
P(s1);
cnt++;
V(s0);
V(s1);

Tid[1]:
P(s0);
P(s1);
cnt++;
V(s1);
V(s0);

Carnegie Mellon

39

Avoided Deadlock in Progress Graph

Thread 0

Thread 1

P(s0) V(s0)P(s1) V(s1)

V(s1)

P(s0)

P(s1)

V(s0) Forbidden region
for s0

Forbidden region
for s1

s0=s1=1

No way for trajectory to get
stuck

Processes acquire locks in
same order

Order in which locks released
immaterial

Carnegie Mellon

40

Demonstration
¢ See program deadlock.c
¢ 100 threads, each acquiring same two locks
¢ Risky mode

§ Even numbered threads request locks in opposite order of odd-
numbered ones

¢ Safe mode
§ All threads acquire locks in same order

Carnegie Mellon

41

Quiz Time!

Check out:

https://canvas.cmu.edu/courses/10968

https://canvas.cmu.edu/courses/10968

Carnegie Mellon

42

Today
¢ Using semaphores to schedule shared resources

§ Readers-writers problem

¢ Other concurrency issues
§ Races
§ Deadlocks
§ Thread safety
§ Interactions between threads and signal handling

Carnegie Mellon

43

Crucial concept: Thread Safety
¢ Functions called from a thread must be thread-safe

¢ Def: A function is thread-safe iff it will always produce
correct results when called repeatedly from multiple
concurrent threads.

¢ Classes of thread-unsafe functions:
§ Class 1: Functions that do not protect shared variables
§ Class 2: Functions that keep state across multiple invocations
§ Class 3: Functions that return a pointer to a static variable
§ Class 4: Functions that call thread-unsafe functions

Carnegie Mellon

44

Thread-Unsafe Functions (Class 1)
¢ Failing to protect shared variables

§ Fix: Use P and V semaphore operations (or mutex)
§ Example: goodcnt.c
§ Issue: Synchronization operations will slow down code

Carnegie Mellon

45

Thread-Unsafe Functions (Class 2)
¢ Relying on persistent state across multiple function invocations

§ Example: Random number generator that relies on static state

static unsigned int next = 1;

/* rand: return pseudo-random integer on 0..32767 */
int rand(void)
{

next = next*1103515245 + 12345;
return (unsigned int)(next/65536) % 32768;

}

/* srand: set seed for rand() */
void srand(unsigned int seed)
{

next = seed;
}

Carnegie Mellon

46

Thread-Safe Random Number Generator

¢ Pass state as part of argument
§ and, thereby, eliminate static state

¢ Consequence: programmer using rand_r must maintain seed

/* rand_r - return pseudo-random integer on 0..32767 */

int rand_r(int *nextp)
{

*nextp = *nextp*1103515245 + 12345;
return (unsigned int)(*nextp/65536) % 32768;

}

Carnegie Mellon

47

Thread-Unsafe Functions (Class 3)
¢ Returning a pointer to a

static variable
¢ Fix 1. Rewrite function so

caller passes address of
variable to store result
§ Requires changes in caller and

callee

¢ Fix 2. Lock-and-copy
§ Requires simple changes in

caller (and none in callee)
§ However, caller must free

memory.

char *lc_itoa(int x, char *dest)
{

P(&mutex);
strcpy(dest, itoa(x));
V(&mutex);
return dest;

}

/* Convert integer to string */
char *itoa(int x)
{

static char buf[11];
sprintf(buf, "%d", x);
return buf;

}

Carnegie Mellon

48

Thread-Unsafe Functions (Class 4)
¢ Calling thread-unsafe functions

§ Calling one thread-unsafe function makes the entire function that calls it
thread-unsafe

§ Fix: Modify the function so it calls only thread-safe functions J

Carnegie Mellon

49

Reentrant Functions
¢ Def: A function is reentrant iff it accesses no shared

variables when called by multiple threads.
§ Important subset of thread-safe functions

§ Require no synchronization operations
§ Only way to make a Class 2 function thread-safe is to make it

reetnrant (e.g., rand_r)

Reentrant
functions

All functions

Thread-unsafe
functions

Thread-safe
functions

Carnegie Mellon

50

Thread-Safe Library Functions
¢ All functions in the Standard C Library (at the back of your

K&R text) are thread-safe
§ Examples: malloc, free, printf, scanf

¢ Most Unix system calls are thread-safe, with a few
exceptions:

Thread-unsafe function Class Reentrant version
asctime 3 asctime_r
ctime 3 ctime_r
gethostbyaddr 3 gethostbyaddr_r
gethostbyname 3 gethostbyname_r
inet_ntoa 3 (none)
localtime 3 localtime_r
rand 2 rand_r

Carnegie Mellon

51

Today
¢ Using semaphores to schedule shared resources

§ Readers-writers problem

¢ Other concurrency issues
§ Races
§ Deadlocks
§ Thread safety
§ Interactions between threads and signal handling

Carnegie Mellon

52

Signal Handling Review

¢ Action
§ Signal can occur at any point in program execution

§ Unless signal is blocked
§ Signal handler runs within same thread
§ Must run to completion and then return to regular program execution

Icurr
Inext

Handler

Receive
signal

Carnegie Mellon

53

Threads / Signals Interactions

¢ Many library functions use lock-and-copy for thread safety
§ Because they have hidden state
§ malloc

§ Free lists
§ fprintf, printf, puts

§ So that outputs from multiple threads don’t interleave
§ sprintf

§ Not officially asynch-signal-safe, but seems to be OK

¢ OK for handler that doesn’t use these library functions

Icurr
Inext

Handler

Receive
signal

fprintf.lock()

fprintf.unlock()

Carnegie Mellon

54

Bad Thread / Signal Interactions

¢ What if:
§ Signal received while library function holds lock
§ Handler calls same (or related) library function

¢ Deadlock!
§ Signal handler cannot proceed until it gets lock
§ Main program cannot proceed until handler completes

¢ Key Point
§ Threads employ symmetric concurrency
§ Signal handling is asymmetric

Icurr
Inext

Handler

Receive
signal

fprintf.lock()

fprintf.unlock()
fprintf.lock()
fprintf.unlock()

Carnegie Mellon

55

Threads Summary
¢ Threads provide another mechanism for writing concurrent

programs
¢ Threads are growing in popularity

§ Somewhat cheaper than processes
§ Easy to share data between threads

¢ However, the ease of sharing has a cost:
§ Easy to introduce subtle synchronization errors
§ Tread carefully with threads!

¢ For more info:
§ D. Butenhof, “Programming with Posix Threads”, Addison-Wesley,

1997

