
15-251 Recitation notes 4/07/03 Guru: Avrim Blum

Plan for today: some interesting things about random walks. Chebyshev’s inequality. In the
process, getting more practice with random variables.

“A drunk man will find his way home, but a drunk bird may get lost forever”
– Shizuo Kakutani

1 Random walks

Consider a random walk on a line. You start at the origin, and at each time step you flip
a coin, going one step to the right if you get a heads and one step to the left if you get a
tails. What is the chance you will eventually get back to the origin? It turns out that, in
fact, with probability 1 you will eventually return. Same in 2-dimensions. But in 3-d, there
is a positive chance you will never come back. (See quotation above.)

We’re going to prove all this by first showing the following claim.

Claim 1 Suppose the probability of not returning to the origin is some p > 0. Then the
expected number of visits to the origin will be 1/p.

Proof: Each time we leave the origin, with probability p we never return, and with prob-
ability 1 − p we do. If we do return, then at that point we are again in exactly the same
situation. So we can think of this like flipping a coin of bias p, where if it comes up tails
we get to flip again, but if it comes up heads, the game is over. We are asking for the
expected number of flips we make. But we have already solved this (in fact, you did it on
your homework!) and we know the answer is 1/p. So, that is the expected number of total
visits to the origin (counting our starting there as a visit too).

1.1 The 1-dimensional case

Let’s calculate the expected number of visits to the origin in the first 2n steps. (Using “2n”
since we can only be at the origin at even time steps...). Let’s use Yn for the random variable
“number of visits to the origin in the first 2n steps”. Can you see any way to break Yn down
into a sum of simpler indicator variables?

Here is a good way: let At be the event that we are at the origin at time 2t. Let Xt be the
indicator RV for At. So, Yn =

∑n
t=0 Xt. Also, E[Xt] = Pr(At) is something we know how to

calculate. What is it? [
(

2t
t

)
/22t.]

Also, on Homework 5, you showed using Stirling’s formula that this is Θ(1/
√
t). This means

that:

E[Yn] = Θ(1/
√

1 + 1/
√

2 + . . .+ 1/
√
n)

= Θ(
√
n).
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Now, I claim we have proven the result that the we return to the origin with probability 1.
If that were false, there would be some probability p > 0 we never return, so the expected
number of returns would be some finite number 1/p. But, we’ve just shown that the expected
number of returns by time 2n is Θ(

√
n) which goes to infinity as n→∞. So, that can’t be

the case.

1.2 The 2-dimensional case

To make things simpler, let’s model the 2-dimensional walk by saying that at each time
step, you move both in the x-direction and in the y-direction. In other words, you can
think of your x-coordinate as a random walk, and you can think of your y-coordinate as an
independent random walk, and both are going on simultaneously. You will be at the origin
only if both random walks happen to hit the origin at the same time.

Let’s again define At as the event that we are at the origin at time 2t. What is Pr(At)? [It
is Θ((1/

√
t)(1/

√
t)) = Θ(1/t).]

So, the expected number of visits to the origin by time 2n is

E[Yn] = Θ(1/1 + 1/2 + 1/3 + . . .+ 1/n)

= Θ(log n).

(I don’t remember if we did this summation in class, but if we didn’t, you can think of∑n
i=1 1/i just like the integral of 1/x from 1 to n.)

In any case, we again would have a contradiction if there was a positive probability p > 0 of
never returning, because log(n) goes to infinity as n→∞.

1.3 The 3-dimensional case

Now we have Pr(At) = Θ(1/t3/2). But in this case,
∑∞
t=1 1/t3/2 is finite. So, there is some

finite number K such that limn→∞E[Yn] < K. But, by Claim 1, this means that there has
to be at least a 1/K chance of never returning: if the chance of never returning was less
than 1/K then the expected number of returns would be greater than K.

2 Chebyshev’s inequality, standard deviations, and the

shape of the binomial

Because it is so important, let’s try to develop a feel for what the (unbiased) binomial
distribution looks like. In other words, let’s say we have walked for n steps. We know
our expected position is the origin, but what can we say about how close we will typically
be? The answer is that we will typically be within ±

√
n. To talk about this formally, let’s

introduce the notions of variance and standard deviation.
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The variance of a random variable X is defined as var[X] = E[(X−E[X])2]. In other words,
on average, what is the square of your distance to the expectation. We can multiply this
definition out to get:

var[X] = E[X2 − 2XE[X] + E[X]2] = E[X2]− (E[X])2,

which was the alternative definition given in class. The standard deviation σ(X) is just
defined to be the square root of the variance. A useful probabilistic fact is:

Claim 2 (Chebyshev’s inequality) Let X be a random variable with expectation µ and
standard deviation σ. Then for any t > 0 we have:

Pr(|X − µ| > tσ) ≤ 1/t2.

In other words, for any random variable, you will typically be within a couple standard
deviations of the expectation. Let’s prove this fact, and then use it to argue about what we
will see in a random walk.

Proof: First of all, if Y is a non-negative random variable and k is some positive number,
we know that Pr(Y > kE[Y ]) < 1/k. (Because otherwise, this fact by itself would bring the
expectation up too high).

Now, let’s just define the random variable Y = (X − µ)2. By definition, E[Y ] = var[X],
right? So, Pr(Y > t2E[Y ]) < 1/t2. But, the event that Y > t2E[Y ] is the same as the event
that |X − µ| > tσ. So, Pr(|X − µ| > tσ) is also less than 1/t2.

Now, what is the variance for our n-step random walk? Let X be the position of our walk
after n steps. Let’s define Xi = 1 if we took a step to the right in our ith step, and Xi = −1
if we took a step to the left on our ith step. So X = X1 + . . .+Xn, and E[Xi] = 0.

There are two parts to variance. The easy part is (E[X])2, which is 0 since E[X] = 0.

What about E[X2]? We can multiply it out and get E[X2] = E[
∑
i

∑
j XiXj] =

∑
i

∑
j E[XiXj].

So, what is E[XiXj]? [If i = j then XiXj is always 1, so E[XiXj] = 1. If i 6= j then all four
possibilities (1, 1), (1,−1), (−1, 1), (−1,−1) are equally likely, so in this case E[XiXj] = 0.]

This means that E[X2] = n, so var[X] = n. [In fact, more generally, if X1, . . . , Xn are
pairwise-independent random variables, then the variance of the sum is the sum of the variances.]
Since standard-deviation is the square-root of variance, we have that for our random walk,
the standard deviation σ(X) =

√
n.

So, combining with Chebyshev’s inequality, we have that we will typically be within a couple√
n’s of the origin.
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