Measurement & Performance

Todd C. Mowry CS 347

Jan 15, 1998

opics:

- Timers
- Performance measures
- Relating performance measures
 - -system perfomance measures
 - -latency and throughput
 - Amdahl's law

The Nature of Time

CS 347 S'98

Anatomy of a Timer

A counter value (T) is updated upon discrete ticks

- a tick occurs once every time units
- upon a tick, the counter value is incremented by time units

Some Terminology:

- timer *period* = seconds / tick
- timer resolution = 1/ ticks / second

CS 347 S'98 =

Using Timers

Estimating elapsed time:

• based on discrete timer values before (T_s) and after (T_f) the event

How close is $T_{observed}$ to T_{actual} ?

Timer Error: Example #1

T_{actual}: ~ 2

T_{observed}:

Absolute measurement error: ~

Relative measurement error: $\sim /2 = \sim 50\%$

CS 347 S'98 :

Timer Error: Example #2

T_{actual}: (~ zero)

Tobserved

Absolute measurement error: ~

Relative measurement error: ~ / = ~ infinite

Timer Error: Example #3

T_{actual}: X

T_{observed}: 0

Absolute measurement error: X

Relative measurement error: X / X = 100%

CS 347 S'98

Timer Error: Summary

Absolute measurement error: +/-

Key point: need a large number of ticks to hide error

- can compute T_{threshold} as a function of and E
- T_{threshold} = minimum observed time to guarantee relative error bound
- *E* = maximum acceptable relative measurement error

CS 347 S'98 =

Homework 1 Timer Package

Unix interval countdown timer

- decrements timer value by every seconds
- setitimer(): initialize timer value
- getitimer(): sample timer value
- measures user time

"etime" package:

- based on Unix interval timers
- set_etime(): initializes timer
- get_etime(): returns elapsed time in seconds since last call to set_etime()

Performance expressed as a time

Absolute time measures

- difference between start and finish of an operation
- synonyms: running time, elapsed time, response time, latency, completion time, execution time
- most straightforward performance measure

Relative (normalized) time measures

- running time normalized to some reference time
- (e.g. time/reference time)

Guiding principle: Choose performance measures that track running time.

Performance expressed as a rate

Rates are performance measures expressed in units of work per unit time.

Examples:

- millions of instructions / sec (MIPS)
- millions of floating point instructions / sec (MFLOPS)
- millions of bytes / sec (MBytes/sec)
- millions of bits / sec (Mbits/sec)
- images / sec
- samples / sec
- transactions / sec (TPS)

Performance expressed as a rate(cont)

Key idea: Report rates that track execution time.

Example: Suppose we are measuring a program that convolves a stream of images from a video camera.

Bad performance measure: MFLOPS

 number of floating point operations depends on the particular convolution algorithm: n^2 matix-vector product vs nlogn fast Fourier transform. An FFT with a bad MFLOPS rate may run faster than a matrix-vector product with a good MFLOPS rate.

Good performance measure: images/sec

• a program that runs faster will convolve more images per second.

Performance expressed as a rate(cont)

Fallacy: Peak rates track running time.

Example: the i860 is advertised as having a peak rate of 80 MFLOPS (40 MHz with 2 flops per cycle).

However, the measured performance of some compiled linear algebra kernels (icc -O2) tells a different story:

Kernel	1d fft	sasum	saxpy	sdot	sgemm	sgemv	spvma
MFLOPS	8.5	3.2	6.1	10.3	6.2	15.0	8.1
%peak	11%	4%	7 %	13%	8%	19%	10%

Relating time to system measures

Suppose that for some program we have:

- T seconds running time (the ultimate performance measure)
- C clock ticks, I instructions, P seconds/tick (performance measures of interest to the system designer)

T secs = C ticks x P secs/tick

= (I inst/I inst) x C ticks x P secs/tick

T secs = I inst x (C ticks/I inst) x P secs/tick

running time

instruction count

avg clock ticks per instruction (CPI) clock period

Pipeline latency and throughput

video processing system

Latency (L): time to process an individual image.

Throughput (R): images processed per unit time

One image can be processed by the system at any point in time

Video system performance

R = 1/L = 1/3 images/sec.

$$T = L + (N-1)1/R$$

= 3N

CS 347 S'98 =

Pipelining the video system

video pipeline

One image can be in each stage at any point in time.

 L_i = latency of stage i

 R_i = throughput of stage i

$$L = L_1 + L_2 + L_3$$

 $R = min(R_1, R_2, R_3)$

Pipelined video system performance

time

Suppose:

$$L_1 = L_2 = L_3 = 1$$

Then:

L = 3 secs/image.

R = 1 image/sec.

$$T = L + (N-1)1/R$$

= N + 2

	Stage 1	Stage 2	Stage	3_
1	1			
2	2	1		_
3	3	2	1	_
4	4	3	2	1 out
5	5	4	3	2 out
6	6	5	4	3 out
7	7	6	5	_ 4 out

18

Relating time to latency and thruput

In general:

• T = L + (N-1)/R

The impact of latency and throughput on running time depends on N:

- (N = 1) => (T = L)
- (N >> 1) => (T = N-1/R)

To maximize throughput, we should try to maximize the minimum throughput over all stages (i.e., we strive for all stages to have equal throughput).

Amdahl's law

You plan to visit a friend in Normandy France and must decide whether it is worth it to take the Concorde SST (\$3,100) or a 747 (\$1,021) from NY to Paris, assuming it will take 4 hours Pgh to NY and 4 hours Paris to Normandy.

```
time NY->Paris total trip time speedup over 747
```

747 8.5 hours 16.5 hours 1

SST 3.75 hours 11.75 hours 1.4

Taking the SST (which is 2.2 times faster) speeds up the overall trip by only a factor of 1.4!

CS 347 S'98

Old program (unenhanced)

Old time: $T = T_1 + T_2$

New program (enhanced)

$$T_1' = T_1$$
 $T_2' <= T_2$

New time: $T' = T_1' + T_2'$

 T_1 = time that can NOT be enhanced.

T₂ = time that can be enhanced.

T₂' = time after the enhancement.

Speedup: S_{overall} = T / T'

Two key parameters:

```
F_{enhanced} = T_2 / T (fraction of original time that can be improved)

S_{enhanced} = T_2 / T_2 (speedup of enhanced part)
```

$$T' = T_1' + T_2' = T_1 + T_2' = T(1-F_{enhanced}) + T_2'$$

$$= T(1-F_{enhanced}) + (T_2/S_{enhanced})$$

$$= T(1-F_{enhanced}) + T(F_{enhanced}/S_{enhanced})$$

$$= T((1-F_{enhanced}) + F_{enhanced}/S_{enhanced})$$
[by def of $S_{enhanced}$]
$$= T((1-F_{enhanced}) + F_{enhanced}/S_{enhanced})$$

Amdahl's Law:

$$S_{\text{overall}} = T / T' = 1/((1-F_{\text{enhanced}}) + F_{\text{enhanced}}/S_{\text{enhanced}})$$

Key idea: Amdahl's law quantifies the general notion of diminishing returns. It applies to any activity, not just computer programs.

2 ———— CS 347 S'98

Trip example: Suppose that for the New York to Paris leg, we now consider the possibility of taking a rocket ship (15 minutes) or a handy rip in the fabric of space-time (0 minutes):

	time NY->Paris	total trip time	speedup over 747
747	8.5 hours	16.5 hours	1
SST	3.75 hours	11.75 hours	1.4
rocket	0.25 hours	8.25 hours	2.0
rip	0.0 hours	8 hours	2.1

Useful corollary to Amdahl's law:

• 1
$$\leq$$
 S_{overall} \leq 1 / (1 - F_{enhanced})

F _{enhanced}	Max S _{overall}	F _{enhanced}	Max S _{overall}
0.0	1	0.9375	16
0.5	2	0.96875	32
0.75	4	0.984375	64
0.875	8	0.9921875	128

Moral: It is hard to speed up a program.

Moral++: It is easy to make premature optimizations.