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Sequential Decision Problems &
Markov Decision Processes

Recap of last lecture

® Reasoning over time
= Markov Processes
= Hidden Markov Models
= modeling state transitions
= probability of state sequences
= inference of hidden states

= forward and Viterbi algorithms




Prediction and Search in Probabilistic Worlds

Markov Systems, Markov
Decision Processes, and
Dynamic Programming

Note to other teachers and users of An d rew W. M oo re
these slides. Andrew would be delighted
if you found this source material useful in
giving your own lectures. Feel free to use P I'OfeSSO I'
these slides verbatim, or to modify them
to fit your own needs. PowerPoint

originals are available. If you make use Sc h oo I Of Co m p Ute r Sc i e n Ce

of a significant portion of these slides in
your own lecture, please include this H H H
message, or the following link to the Carneg Ie Mel Ion U n |Ve rs Ity

source repository of Andrew’s tutorials:

http://www.cs.cmu.edu/~awm/tutorials . www.cs.cmu.edu/~awm
Comments and corrections gratefully
received. awm@cs.cmu.edu

412-268-7599
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How do we compute J,, Jg, J1, Js, Jp ?
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Discounted Rewards

“A reward (payment) in the future is not worth quite
as much as a reward now.”

» Because of chance of obliteration

» Because of inflation

Example:

Being promised $10,000 next year is worth only 90% as
much as receiving $10,000 right now.

Assuming payment n years in future is worth only
(0.9)" of payment now, what is the AP’s Future
Discounted Sum of Rewards ?
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Discount Factors

People in economics and probabilistic decision-
making do this all the time.

The “Discounted sum of future rewards” using
discount factor y” is

(reward now) +
v (reward in 1 time step) +
v 2 (reward in 2 time steps) +
v 3 (reward in 3 time steps) +

(infinite sum)
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How do we compute J,, Jg, J1, Js, Jp ?
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A Markov System with Rewards...

Has a set of states {S, S, -- S}
Has a transition probability matrix

Pis Pz Py
P= |P,, P, = Prob(Next = S; | This = S;)
Puveo o P

Each state has areward. {r,r, - ry}
There’s a discount factory. 0<y<1
On Each Time Step ...
0. Assume your state is S;
1. You get given reward r;
2. You randomly move to another state
P(NextState = S; | This = S;) = P;

3. All future rewards are discounted by vy
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Value lteration: another way to solve
a Markov System

Define
J1(S,) = Expected discounted sum of rewards over the next 1 time step.

J2(S;) = Expected discounted sum rewards during next 2 steps
J3(S;) = Expected discounted sum rewards during next 3 steps

JK(S;) = Expected discounted sum rewards during next k steps

J(S) = (what?)
J2(S) = (what?)
JKH(S) = (what?)
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The Acad§6mic Life
B' T0.7

J1(S;) = Expected discounted sum of rewards over the next 1 time step.
J2(S;) = Expected discounted sum rewards during next 2 steps
J3(S;) = Expected discounted sum rewards during next 3 steps
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Value lteration: another way to solve
a Markov System

Define
J1(S,) = Expected discounted sum of rewards over the next 1 time step.

J2(S,) = Expected discounted sum rewards during next 2 steps
J3(S,) = Expected discounted sum rewards during next 3 steps

JX(S;) = Expected discounted sum rewards during next k steps
N = Number of states

JI(S) =r, (what?)
N
1
JYS)) = it 7/; pij'] (Sj) (what?)
: N
JKH(S) =F; + 7/2 pl.ij (Sj) (what?)
=1
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Let’'s do Value Iteration

1/2

JK(SUN) | J¥(wIND) | JK(HAIL)
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Let’'s do Value lteration

1/2
1/2

5 4.88 -1.52 | -11.11
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Value lteration for solving Markov
Systems

« Compute J(S)) for each j
« Compute J2(S)) for each j

« Compute JXS,) for each j
As k—o JKS)—-J*(S;). Why?
When to stop? When

Max | J&1(S) - JKS) | < €
/
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These are values, what about decisions?

A Markov Decision Proces

You run a
startup
company.

In every
state you
must
choose
between
Saving
money or
Advertising.

Unknown
+10
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Markov Decision Processes

An MDP has...

+ Asetofstates {s,-- Sy}

« Asetofactions {a, - ay}

+ Asetofrewards {r, - ry} (one for each state)
» A transition probability function

P; = Prob(Next = j|This =i and I use action k)

On each step:
0. Call current state S;
1. Receive reward r;
2. Choose action € {a, --- a,;}
3. If you choose action a, you'll move to state S; with
probability P;
4. All future rewards are discounted by y
Copyright © 2002, 2004, Andrew W. Moore

Modeling Environments with Markov Models

Types of Markov Models

State Passive Active
Fully Markov Model MDP
Observable
Hidden State HMM POMDP
X

e MDP
- tractable to solve
- relatively easy to specify
= assumes perfect knowledge of state

Advanced topic.
We won’t cover
these in detail.

e POMDP
= Treats all sources of uncertainty (acting, sensing, environment) in a uniform framework
= Allows for taking actions that gain information
- Difficult to specify all the conditional probabilities
= Almost always infeasible to solve optimally




A Polic

A policy is a mapping from states to actions.

10
Examples 51 1
STATE — ACTION 172 @ @“
PU S )
PF A gl )
e .
A

RF

Policy Number 1:

& | STATE — ACTION q
)]
PU A

g PF A @“
zZ
z RU A
S RF A

L]

How many possible policies in our example?
*  Which of the above two policies is best?

How do you compute the optimal policy?
Copyright © 2002, 2004, Andrew W. Moore

Interesting Fact

For every M.D.P. there exists an optimal
policy.

It's a policy such that for every possible start
state there is no better option than to follow
the policy.

(Not proved in this
lecture)
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Computing the Optimal Policy

Idea One:
Run through all possible policies.
Select the best.

What's the problem ?7?
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Optimal Value Function

Define J*(S;) = Expected Discounted Future
Rewards, starting from state S,
assuming we use the optimal policy

Question

What (by inspection) is
an optimal policy for that
MDP?

(assume y = 0.9)

1
What is J*(S,) ?
What is J*(S,) ?
What is J*(S;) ?
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Computing the Optimal Value

Function with Value lteration
Define
JK(S,) = Maximum possible expected
sum of discounted rewards |

can get if | start at state S; and |
live for k time steps.

Note that J'(S)) =,
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Let’s compute J4(Si) for the startup example

k| JPY) | JPF) | J<RU) | J4RF)

Artificial Intelligence: Markov Decision Processes Michael S. Lewicki ¢ Carnegie Mellon



Let’s compute J4(Si) for the startup example

k| J<PY) | J<PF) | J<RU) | J“RF)
| 0 0 10 10
2 0 45 14.5 19
3 203 8.5 16.53 25.08
4 476 12.20 18.35 28.72

Bellman’s Equation

JnH(Si):ml?X{’”i +7iP;Jn(Sj)}
i

Value lIteration for solving MDPs

Compute J1(S)) for all i
Compute J2(S)) for all i

Compute J"(S;) for all i
..... until converged

J”ﬂ(&)—ﬁ(&*g}

{converged when max

...Also known as
Dynamic Programming
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Finding the Optimal Policy

1. Compute J*(S;) for all i using Value
lteration (a.k.a. Dynamic Programming)

2. Define the best action in state S, as

argmax{r,- +7ZP§J*(S]-)}
k J

(Why?)
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Applications of MDPs

This extends the search algorithms of your first
lectures to the case of probabilistic next states.

Many important problems are MDPs....

.. Robot path planning

.. Travel route planning

.. Elevator scheduling

.. Bank customer retention

.. Autonomous aircraft navigation
.. Manufacturing processes

.. Network switching & routing
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Another way to compute i
optimal policies

Policy Iteration

Write 11(S;) = action selected in the /'th state. Then 1 is a policy.
Write 11t = f'th policy on fth iteration
Algorithm:

" = Any randomly chosen policy
Vi compute J°(S,) = Long term reward starting at S; using 11’
m,(S;) = argmax|r +7/ZP;J°(SJ.)}
a J

... Keep computing ’, 12, 3 .... until Tk = **’ . You now have
an optimal policy.
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Policy Iteration & Value lteration:
Which is best 7?7

It depends.
Lots of actions? Choose Policy Iteration
Already got a fair policy? Policy Iteration
Few actions, acyclic? Value lteration

Best of Both Worlds:

Modified Policy lteration [Puterman]
...a simple mix of value iteration and policy iteration

3rd Approach

Linear Programming
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Dealing with large numbers of states

s STATE
Don’t use a Table...

VALUE

use...

(Generalizers) (Hierarchies)
Splines
/—o\/ | [Munos 1999]
=
A Function Multi Resolution

STATE|:> ;@%@ VALUE
Copyright © 2002, 2004, Andrew W. Moore %Z

Approximator ﬁ

What You Should Know

 Definition of a Markov System with Discounted

rewards
 How to solve it with Matrix Inversion

* How (and why) to solve it with Value Iteration
» Definition of an MDP, and value iteration to solve

an MDP
 Policy iteration

» Great respect for the way this formalism
generalizes the deterministic searching of the start

of the class

 But awareness of what has been sacrificed.
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