Nanotechnology Design Space

William Knop, Dmitry Saltykov

November 3rd, 2004

1 Attributes

1.1 Numerical Attributes

Assembly Method :

Description: The degree, on a scale from 0 to 1, to which the assembly is top-down, as opposed to bottom-up. Scale: [0..1]

Assembly Procedure :

Description: The degree, on a scale from 0 to 1, to which the assembly is deterministic, as opposed to random. Scale: [0.1]

Bio-Integration Index :

Description: The degree, on a scale from 0 to 1, to which the product interacts with carbon-based life. Scale: [0..1]

Distinct State Variables :

Description: The number of distinct variables used to describe all states of the product. Scale: $[0.\infty)$

Activity Metric :

Description: The amount of entropy, in eu (4.184 J/K-mol), per second leaving the system while it's in use. Scale: $[0..\infty)$

Macro-Dimensions :

Description: The number of required dimensions which are larger than 50nm. Scale: [0..3]

Nano-Dimensions :

Description: The number of controlled dimensions which are 50nm or smaller. Scale: [0..3]

Organic Composition :

Description: The degree, on a scale from 0 to 1, to which the product is organic, as opposed to inorganic. Scale: $[0..\infty)$

1.2 Text Attributes

Applications :

Description: The expected applications of the product. *Examples*: adhesives, miniature display devices

Forces :

Description: The forces which are significant in the use of the product. *Examples*: electrostatic, van der wals

Industries :

Description: The industries which may benefit from the product. *Examples*: aeronautics, textiles

Materials :

Description: The materials used in the product. *Examples*: carbon nanotubes, copper

2 How do we evaluate Nanotech?

2.1 Order of Attribute Importance

- 1. Nano-Dimensions (N) What is it?
- 2. Macro-Dimensions (D) What limitations does it have?
- 3. Activity Metric (A) Does it actively do anything?
- 4. Assembly Method (M) How is it made?
- 5. Assembly Procedure (P) How well is it made?

2.2 Approximation Function

$$\frac{N}{D+1} + \frac{P}{M+1} + \frac{A}{A+1}$$
(1)

3 What are some applications of Nanotech?

Bio-Informatics Devices to aid inspection of biological organisms.

Cybernetics Devices to supplant or augment biological mechanisms, such as nerve replacement/reconstruction.

Fuel Cells Special materials and devices for use in hydrogen fuel cells and the like.

- Hazardous Materials Cleanup Nano-machines which decompose or otherwise neutralize harmful chemical or nuclear agents.
- Nano-materials Production of nano-materials such as diamond filament or carbon nanotubes, for use in high-strength composits.

4 How do we evaluate the risks involved in Nanotech?

4.1 Order of Attribute Importance

- 1. Bio-Integration Index (B) How can it affect me?
- 2. Assembly Method (M) How quickly can it go wrong (linear vs. exponential)?
- 3. Activity Metric (A) How much does it do?
- 4. Assembly Procedure (P) How much does it degrade per generation?
- 5. Organic Composition (O) How much is it likely to infringe upon our resources?
- 6. Macro-Dimensions (D) How much infrastructure does it require?

4.2 Approximation Function

$$\frac{A^M}{P+1} + \frac{O+B}{D+1} \tag{2}$$