
Parallel Computer Architecture and Programming
CMU 15-418/15-618, Fall 2019

Lecture 4:

Parallel Programming Basics

 1

 CMU 15-418/618, Fall 2019

Review: 3 parallel programming models
Shared address space
- Communication is unstructured, implicit in loads and stores
- Natural way of programming, but can shoot yourself in the foot easily
- Program might be correct, but not perform well

Message passing
- Structure all communication as messages
- Often harder to get first correct program than shared address space
- Structure often helpful in getting to first correct, scalable program

Data parallel
- Structure computation as a big “map” over a collection
- Assumes a shared address space from which to load inputs/store results, but

model severely limits communication between iterations of the map
(goal: preserve independent processing of iterations)

- Modern embodiments encourage, but don’t enforce, this structure

• 2

 CMU 15-418/618, Fall 2019

Modern practice: mixed programming
Use shared address space programming within a multi-core node of a
cluster, use message passing between nodes
- Very, very common in practice
- Use convenience of shared address space where it can be implemented

efficiently (within a node), require explicit communication elsewhere

Data-parallel-ish programming models support shared-memory style
synchronization primitives in kernels
- Permit limited forms of inter-iteration communication (e.g., CUDA, OpenCL)

In a future lecture… CUDA/OpenCL use data-parallel model to scale to
many cores, but adopt shared-address space model allowing threads
running on the same core to communicate.

• 3

 CMU 15-418/618, Fall 2019

Examples of applications to parallelize

• 4

 CMU 15-418/618, Fall 2019

Simulating of ocean currents

Discretize 3D ocean volume into slices represented as 2D grids

Discretize time evolution of ocean: ∆t
High accuracy simulation requires small ∆t and high resolution grids

• 5Figure credit: Culler, Singh, and Gupta

 CMU 15-418/618, Fall 2019

Where are the dependencies?

• 6

Parallelism within a grid (data-parallelism) and across operations on the different grids.
The implementation only leverages data-parallelism (for simplicity)

Boxes correspond to
computations on grids

Lines express dependencies
between computations on grids

The “grid solver” example
corresponds to these parts
of the application

Dependencies in one time step of ocean simulation

Figure credit: Culler, Singh, and Gupta

 CMU 15-418/618, Fall 2019

Galaxy evolution

Represent galaxy as a collection of N particles (think: particle = star)

Compute forces on each particle due to gravity
- Naive algorithm is O(N2) — all particles interact with all others (gravity has infinite extent)

- Magnitude of gravitational force falls off with distance (so algorithms approximate forces
from far away stars to gain performance)

- Result is an O(NlgN) algorithm for computing gravitational forces between all stars

• 7

Barnes-Hut algorithm

(treat as single mass)

(treat as single mass)

 CMU 15-418/618, Fall 2019

Barnes-Hut tree

Spatial Domain Quad-Tree Representation of Bodies
Leaf nodes are star particles
Interior nodes store center of mass + aggregate mass of all child bodies
To compute forces on each body, traverse tree... accumulating forces from all other bodies
- Compute forces using aggregate interior node if L/D < ϴ, else descend to children

Expected number of nodes touched ~ lg N / ϴ2

• 8

L
D

 CMU 15-418/618, Fall 2019

Creating a parallel program
Thought process:
1. Identify work that can be performed in parallel
2. Partition work (and also data associated with the work)
3. Manage data access, communication, and synchronization

Recall one of our main goals is speedup *

• 9

For a fixed computation:

Speedup(P processors) =
Time (1 processor)

Time (P processors)

* Other goals include high efficiency (cost, area, power, etc.)
 or working on bigger problems than can fit on one machine

 CMU 15-418/618, Fall 2019

Creating a parallel program

• 10

Problem to solve

Subproblems
(a.k.a. “tasks”,
“work to do”)

Parallel Threads **
(“workers”)

Parallel program
(communicating

threads)

Execution on
parallel machine

Decomposition

Assignment

Orchestration

Mapping

These responsibilities may be assumed by
the programmer, by the system (compiler,

runtime, hardware), or by both!

** I had to pick a term

Adopted from: Culler, Singh, and Gupta

 CMU 15-418/618, Fall 2019

Decomposition
Break up problem into tasks that can be carried out in parallel
-Decomposition need not happen statically
-New tasks can be identified as program executes

Main idea: create at least enough tasks to keep all execution
units on a machine busy

• 11

Key aspect of decomposition: identifying dependencies
(or... a lack of dependencies)

 CMU 15-418/618, Fall 2019

Amdahl’s Law: dependencies limit
maximum speedup due to parallelism

You run your favorite sequential program...

Let S = the fraction of sequential execution that is inherently
sequential (dependencies prevent parallel execution)

Then maximum speedup due to parallel execution ≤ 1/S

• 12

 CMU 15-418/618, Fall 2019

A simple example
Consider a two-step computation on a N x N image
- Step 1: double brightness of all pixels

(independent computation on each grid element)
- Step 2: compute average of all pixel values

Sequential implementation of program
- Both steps take ~ N2 time, so total time is ~ 2N2

• 13

N

N

Execution time

Pa
ra

lle
lis

m

N2 N2

1

 CMU 15-418/618, Fall 2019

▪ Overall performance:

Speedup

Speedup ≤ 2

First attempt at parallelism (P processors)
Strategy:
- Step 1: execute in parallel
-time for phase 1: N2/P

- Step 2: execute serially
-time for phase 2: N2

• 14

Execution time

Pa
ra

lle
lis

m

N2/P

N2

1

P

Execution time

Pa
ra

lle
lis

m

N2 N2

1

P

Sequential program

Parallel program

 CMU 15-418/618, Fall 2019

Parallelizing step 2
Strategy:
- Step 1: execute in parallel
- time for phase 1: N2/P

- Step 2: compute partial sums in parallel, combine results serially
- time for phase 2: N2/P + P

Overall performance:

- Speedup

• 15

Execution time

Pa
ra

lle
lis

m

N2/P

1

P
N2/P

Note:
speedup → P when N >> P

overhead:
combining the partial sums

Parallel program

P

 CMU 15-418/618, Fall 2019

Amdahl’s law
Let S = the fraction of total work that is inherently sequential

Max speedup on P processors given by:

speedup

• 16Processors

M
ax

 Sp
ee

du
p

S=0.01

S=0.05

S=0.1

 CMU 15-418/618, Fall 2019

Decomposition
Who is responsible for performing decomposition?
- In most cases: the programmer

Automatic decomposition of sequential programs continues to
be a challenging research problem (very difficult in general case)
- Compiler must analyze program, identify dependencies

- What if dependencies are data dependent (not known at compile time)?

- Researchers have had modest success with simple loop nests

- The “magic parallelizing compiler” for complex, general-purpose code has
not yet been achieved

• 17

 CMU 15-418/618, Fall 2019

Assignment

• 18

Problem to solve

Decomposition

Assignment

Orchestration

Mapping

Subproblems
(a.k.a. “tasks”,
“work to do”)

Parallel Threads **
(“workers”)

Parallel program
(communicating

threads)

Execution on
parallel machine

** I had to pick a term

 CMU 15-418/618, Fall 2019

Assignment
Assigning tasks to threads **

- Think of “tasks” as things to do

- Think of threads as “workers”

Goals: balance workload, reduce communication costs

Can be performed statically, or dynamically during execution

While programmer often responsible for decomposition, many
languages/runtimes take responsibility for assignment.

• 19

** I had to pick a term
(will explain in a second)

 CMU 15-418/618, Fall 2019

Assignment examples in ISPC

• 20

export	void	sinx(
			uniform	int	N,	
			uniform	int	terms,	
			uniform	float*	x,	
			uniform	float*	result)	
{	
			//	assumes	N	%	programCount	=	0	
			for	(uniform	int	i=0;	i<N;	i+=programCount)	
			{	

				int	idx	=	i	+	programIndex;	
				float	value	=	x[idx];	
				float	numer	=	x[idx]	*	x[idx]	*	x[idx];	
				uniform	int	denom	=	6;		//	3!	
				uniform	int	sign	=	-1;	

				for	(uniform	int	j=1;	j<=terms;	j++)	
				{		
							value	+=	sign	*	numer	/	denom;	
							numer	*=	x[idx]	*	x[idx];	
							denom	*=	(2*j+2)	*	(2*j+3);	
							sign	*=	-1;	

						}	
						result[i]	=	value;	
			}	
}

Decomposition of work by loop iteration

Programmer-managed assignment:
Static assignment
Assign iterations to ISPC program instances in
interleaved fashion

export	void	sinx(
			uniform	int	N,	
			uniform	int	terms,	
			uniform	float*	x,	
			uniform	float*	result)	
{	
			foreach	(i	=	0	...	N)	
			{	

				float	value	=	x[i];	
				float	numer	=	x[i]	*	x[i]	*	x[i];	
				uniform	int	denom	=	6;		//	3!	
				uniform	int	sign	=	-1;	

				for	(uniform	int	j=1;	j<=terms;	j++)	
				{		
							value	+=	sign	*	numer	/	denom;	
							numer	*=	x[i]	*	x[i];	
							denom	*=	(2*j+2)	*	(2*j+3);	
							sign	*=	-1;	

						}	
						result[i]	=	value;	
			}	
}

Decomposition of work by loop iteration

foreach construct exposes independent work to system
System-manages assignment of iterations (work) to ISPC
program instances (abstraction leaves room for dynamic
assignment, but current ISPC implementation is static)

 CMU 15-418/618, Fall 2019

Static assignment example using pthreads

• 21

typedef	struct	{	
			int	N,	terms;	
			float*	x,	*result;	
}	my_args;	

void	parallel_sinx(int	N,	int	terms,	float*	x,	float*	result)	
{	
				pthread_t	thread_id;	
				my_args	args;	

				args.N	=	N/2;	
				args.terms	=	terms;	
				args.x	=	x;	
				args.result	=	result;	

				//	launch	second	thread,	do	work	on	first	half	of	array	
				pthread_create(&thread_id,	NULL,	my_thread_start,	&args);	

				//	do	work	on	second	half	of	array	in	main	thread	
				sinx(N	-	args.N,	terms,	x	+	args.N,	result	+	args.N);	

				pthread_join(thread_id,	NULL);	
}	

void	my_thread_start(void*	thread_arg)	
{	
			my_args*	thread_args	=	(my_args*)thread_arg;	
			sinx(args->N,	args->terms,	args->x,	args->result);	//	do	work	
}

Decomposition of work by loop iteration

Programmer-managed assignment:
Static assignment
Assign iterations to pthreads in blocked fashion
(first half of array to spawned thread, second
half to main thread)

 CMU 15-418/618, Fall 2019

Dynamic assignment using ISPC tasks

• 22

void	foo(uniform	float*	input,	
									uniform	float*	output,	
									uniform	int	N)	
{	
		//	create	a	bunch	of	tasks	
		launch[100]	my_ispc_task(input,	output,	N);	
}

Worker
thread 0

Worker
thread 1

Worker
thread 2

Worker
thread 3

task 0 task 1 task 2 task 99. . .
List of tasks:

Assignment policy: after completing current task, worker thread inspects list
and assigns itself the next uncompleted task.

Next task ptr

task 3 task 4

ISPC runtime assign tasks to
worker threads

 CMU 15-418/618, Fall 2019

Orchestration

• 23

Problem to solve

Decomposition

Assignment

Orchestration

Mapping

Subproblems
(a.k.a. “tasks”,
“work to do”)

Parallel Threads **
(“workers”)

Parallel program
(communicating

threads)

Execution on
parallel machine

** I had to pick a term

 CMU 15-418/618, Fall 2019

Orchestration
Involves:
-Structuring communication

-Adding synchronization to preserve dependencies if necessary

-Organizing data structures in memory

-Scheduling tasks

Goals: reduce costs of communication/sync, preserve locality of
data reference, reduce overhead, etc.

Machine details impact many of these decisions
-If synchronization is expensive, might use it more sparsely

• 24

 CMU 15-418/618, Fall 2019

Mapping to hardware

• 25

Problem to solve

Decomposition

Assignment

Orchestration

Mapping

Subproblems
(a.k.a. “tasks”,
“work to do”)

Parallel Threads **
(“workers”)

Parallel program
(communicating

threads)

Execution on
parallel machine

** I had to pick a term

 CMU 15-418/618, Fall 2019

Mapping to hardware
Mapping “threads” (“workers”) to hardware execution units

Example 1: mapping by the operating system
- e.g., map pthread to HW execution context on a CPU core

Example 2: mapping by the compiler
- Map ISPC program instances to vector instruction lanes

Example 3: mapping by the hardware
- Map CUDA thread blocks to GPU cores (future lecture)

Some interesting mapping decisions:
- Place related threads (cooperating threads) on the same processor

(maximize locality, data sharing, minimize costs of comm/sync)

- Place unrelated threads on the same processor (one might be bandwidth limited and
another might be compute limited) to use machine more efficiently

• 26

 CMU 15-418/618, Fall 2019

Decomposing computation or data?

Often, the reason a problem requires lots of computation (and needs to be parallelized)
is that it involves manipulating a lot of data.

I’ve described the process of parallelizing programs as an act of partitioning
computation.

Often, it’s equally valid to think of partitioning data. (computations go with the data)

But there are many computations where the correspondence between work-to-do
(“tasks”) and data is less clear. In these cases it’s natural to think of partitioning
computation. • 27

N

N

 CMU 15-418/618, Fall 2019

A parallel programming example

• 28

 CMU 15-418/618, Fall 2019

A 2D-grid based solver
Solve partial differential equation (PDE) on (N+2) x (N+2) grid

Iterative solution
- Perform Gauss-Seidel sweeps over grid until convergence

• 29

N

N

A[i,j]	=	0.2	*	(A[i,j]	+	A[i,j-1]	+	A[i-1,j]	

																									+	A[i,j+1]	+	A[i+1,j]);	

Grid solver example from: Culler, Singh, and Gupta

 CMU 15-418/618, Fall 2019

Grid solver algorithm
C-like pseudocode for sequential algorithm is provided below

• 30

const	int	n;	
float*	A;																				//	assume	allocated	to	grid	of	N+2	x	N+2	elements	

void	solve(float*	A)	{	

		float	diff,	prev;	
		bool	done	=	false;	

		while	(!done)	{																							//	outermost	loop:	iterations	
				diff	=	0.f;																							
				for	(int	i=1;	i<n	i++)	{												//	iterate	over	non-border	points	of	grid	
						for	(int	j=1;	j<n;	j++)	{	
								prev	=	A[i,j];	
								A[i,j]	=	0.2f	*	(A[i,j]	+	A[i,j-1]	+	A[i-1,j]	+	
																																		A[i,j+1]	+	A[i+1,j]);	
								diff	+=	fabs(A[i,j]	-	prev);				//	compute	amount	of	change	
						}	
				}	
				
				if	(diff/(n*n)	<	TOLERANCE)									//	quit	if	converged	
						done	=	true;	
		}	
}	
	

Grid solver example from: Culler, Singh, and Gupta

 CMU 15-418/618, Fall 2019

Step 1: identify dependencies
(problem decomposition phase)

• 31

N

N
......

Each row element depends on element to left.

Each column depends on previous column.

 CMU 15-418/618, Fall 2019

Step 1: identify dependencies
(problem decomposition phase)

• 32

N

N
......

There is independent work along the diagonals!

Good: parallelism exists!

Possible implementation strategy:
1. Partition grid cells on a diagonal into tasks
2. Update values in parallel
3. When complete, move to next diagonal

Bad: independent work is hard to exploit
Not much parallelism at beginning and end of
computation.
Frequent synchronization (after completing
each diagonal)

 CMU 15-418/618, Fall 2019

Let’s make life easier on ourselves
Idea: improve performance by changing the algorithm to one that
is more amenable to parallelism

- Change the order grid cell cells are updated

- New algorithm iterates to same solution (approximately),
but converges to solution differently
- Note: floating-point values computed are different, but solution still

converges to within error threshold

- Yes, we needed domain knowledge of Gauss-Seidel method
for solving a linear system to realize this change is
permissible for the application

• 33

 CMU 15-418/618, Fall 2019

New approach: reorder grid cell update via
red-black coloring

• 34

N

N

Update all red cells in parallel

When done updating red cells ,
update all black cells in parallel
(respect dependency on red cells)

Repeat until convergence

 CMU 15-418/618, Fall 2019

Possible assignments of work to processors

• 35

Question: Which is better? Does it matter?

Answer: it depends on the system this program is running on

 CMU 15-418/618, Fall 2019

Consider dependencies (data flow)
1. Perform red update in parallel

2. Wait until all processors done with update

3. Communicate updated red cells to other processors

4. Perform black update in parallel

5. Wait until all processors done with update

6. Communicate updated black cells to other processors

7. Repeat

• 36

Wait

Wait

Compute red cells

Compute black cells

P1 P2 P3 P4

 CMU 15-418/618, Fall 2019

Communication resulting from assignment

• 37

= data that must be sent to P2 each iteration
Blocked assignment requires less data to be communicated between processors

 CMU 15-418/618, Fall 2019

Data-parallel expression of solver

• 38

 CMU 15-418/618, Fall 2019

const	int	n;																										

float*	A	=	allocate(n+2,	n+2));			//	allocate	grid	

void	solve(float*	A)	{	

			bool	done	=	false;	
			float	diff	=	0.f;	
			while	(!done)	{	
					for_all	(red	cells	(i,j))	{	
									float	prev	=	A[i,j];	
									A[i,j]	=	0.2f	*	(A[i-1,j]	+	A[i,j-1]	+	A[i,j]	+	
																										A[i+1,j]	+	A[i,j+1]);	
									reduceAdd(diff,	abs(A[i,j]	-	prev));	
					}	
				
					if	(diff/(n*n)	<	TOLERANCE)	
									done	=	true;					
				}	
}	

Data-parallel expression of grid solver
Note: to simplify pseudocode: just showing red-cell update

• 39

decomposition:
individual grid
elements constitute
independent work

Assignment: ???

Orchestration:
handled by system
(End of for_all block is implicit wait for all
workers before returning to sequential control)

Grid solver example from: Culler, Singh, and Gupta

Orchestration: handled by system
(builtin communication primitive: reduceAdd)

 CMU 15-418/618, Fall 2019

Shared address space (with SPMD threads)
expression of solver

• 40

 CMU 15-418/618, Fall 2019

Shared address space expression of solver
SPMD execution model

• 41

▪ Programmer is responsible for synchronization

▪ Common synchronization primitives:

- Locks (provide mutual exclusion): only one
thread in the critical region at a time

- Barriers: wait for threads to reach this point

Wait

Wait

Compute red cells

Compute black cells

P1 P2 P3 P4

 CMU 15-418/618, Fall 2019

int					n;																		//	grid	size	
bool				done	=	false;	
float			diff	=	0.0;	
LOCK				myLock;	
BARRIER	myBarrier;	

//	allocate	grid	
float*	A	=	allocate(n+2,	n+2);	

void	solve(float*	A)	{	
				
			int	threadId	=	getThreadId();	
			int	myMin	=	1	+	(threadId	*	n	/	NUM_PROCESSORS);	
			int	myMax	=	myMin	+	(n	/	NUM_PROCESSORS)			
				
			while	(!done)	{	
					diff	=	0.f;	
					barrier(myBarrier,	NUM_PROCESSORS);	
					for	(j=myMin	to	myMax)	{	
								for	(i	=	red	cells	in	this	row)	{	
											float	prev	=	A[i,j];	
											A[i,j]	=	0.2f	*	(A[i-1,j]	+	A[i,j-1]	+	A[i,j]	+	
																												A[i+1,j],	A[i,j+1]);	
											lock(myLock)	
											diff	+=	abs(A[i,j]	-	prev));	
											unlock(myLock);	
								}	
					}	
					barrier(myBarrier,	NUM_PROCESSORS);	
					if	(diff/(n*n)	<	TOLERANCE)												//	check	convergence,	all	threads	get	same	answer	
									done	=	true;	
					barrier(myBarrier,	NUM_PROCESSORS);	
			}	
}

Shared address space solver (pseudocode in SPMD execution model)

• 42

Value of threadId is different for
each SPMD instance: use value to
compute region of grid to work on

Each thread computes the rows it is
responsible for updating

Grid solver example from: Culler, Singh, and Gupta

Assume these are global variables
(accessible to all threads)

Assume solve function is executed by
all threads. (SPMD-style)

 CMU 15-418/618, Fall 2019

Review: need for mutual exclusion
Each thread executes
- Load the value of diff into register r1
- Add the register r2 to register r1
- Store the value of register r1 into diff

One possible interleaving: (let starting value of diff=0, r2=1)

• 43

r1	←	diff	

r1	←	r1	+	r2	

diff	←	r1

r1	←	diff	

r1	←	r1	+	r2	

diff	←	r1

T0 T1

T0	reads	value	0	
T1	reads	value	0	
T0	sets	value	of	its	r1	to	1	
T1	sets	value	of	its	r1	to	1	
T0	stores	1	to	diff	
T1	stores	1	to	diff

▪ Need this set of three instructions to be atomic

 CMU 15-418/618, Fall 2019

Mechanisms for preserving atomicity
Lock/unlock mutex around a critical section

• 44

LOCK(mylock);	

//	critical	section	

UNLOCK(mylock);

▪ Intrinsics for hardware-supported atomic read-modify-write operations

▪ Some languages have first-class support for atomicity of code blocks

atomic	{	

		//	critical	section	

}

atomicAdd(x,	10);

 CMU 15-418/618, Fall 2019

int					n;																			//	grid	size	
bool				done	=	false;	
float			diff	=	0.0;	
LOCK				myLock;	
BARRIER	myBarrier;	

//	allocate	grid	
float*	A	=	allocate(n+2,	n+2);	

void	solve(float*	A)	{	
			
			int	threadId	=	getThreadId();	
			int	myMin	=	1	+	(threadId	*	n	/	NUM_PROCESSORS);	
			int	myMax	=	myMin	+	(n	/	NUM_PROCESSORS)			
				
			while	(!done)	{	
					diff	=	0.f;	
					barrier(myBarrier,	NUM_PROCESSORS);	
					for	(j=myMin	to	myMax)	{	
								for	(i	=	red	cells	in	this	row)	{	
											float	prev	=	A[i,j];	
											A[i,j]	=	0.2f	*	(A[i-1,j]	+	A[i,j-1]	+	A[i,j]	+	
																												A[i+1,j],	A[i,j+1]);	
											lock(myLock)	
											diff	+=	abs(A[i,j]	-	prev));	
											unlock(myLock);	
								}	
					}	
					barrier(myBarrier,	NUM_PROCESSORS);	
					if	(diff/(n*n)	<	TOLERANCE)												//	check	convergence,	all	threads	get	same	answer	
									done	=	true;	
					barrier(myBarrier,	NUM_PROCESSORS);	
			}	
}

Shared address space solver

Do you see a potential performance
problem with this implementation?

Grid solver example from: Culler, Singh, and Gupta

(pseudocode in SPMD
execution model)

• 45

 CMU 15-418/618, Fall 2019

int					n;																		//	grid	size	
bool				done	=	false;	
float			diff	=	0.0;	
LOCK				myLock;	
BARRIER	myBarrier;	

//	allocate	grid	
float*	A	=	allocate(n+2,	n+2);	

void	solve(float*	A)	{	
			float	myDiff;		
			int	threadId	=	getThreadId();	
			int	myMin	=	1	+	(threadId	*	n	/	NUM_PROCESSORS);	
			int	myMax	=	myMin	+	(n	/	NUM_PROCESSORS)			
				
			while	(!done)	{	
					float	myDiff	=	0.f;	
					diff	=	0.f;	
					barrier(myBarrier,	NUM_PROCESSORS);	
					for	(j=myMin	to	myMax)	{	
								for	(i	=	red	cells	in	this	row)	{	
											float	prev	=	A[i,j];	
											A[i,j]	=	0.2f	*	(A[i-1,j]	+	A[i,j-1]	+	A[i,j]	+	
																												A[i+1,j],	A[i,j+1]);	
											myDiff	+=	abs(A[i,j]	-	prev));	
					}	
					lock(myLock);	
					diff	+=	myDiff;	
					unlock(myLock);	
					barrier(myBarrier,	NUM_PROCESSORS);	
					if	(diff/(n*n)	<	TOLERANCE)												//	check	convergence,	all	threads	get	same	answer	
									done	=	true;	
					barrier(myBarrier,	NUM_PROCESSORS);	
			}	
}

Shared address space solver (SPMD execution model)

• 46

compute per worker partial sum

Now only only lock once per thread, not once
per (i,j) loop iteration!

Grid solver example from: Culler, Singh, and Gupta

Improve performance by accumulating
into partial sum locally, then complete
reduction globally at the end of the
iteration.

 CMU 15-418/618, Fall 2019

Barrier synchronization primitive
barrier(num_threads)		
Barriers are a conservative way to express
dependencies

Barriers divide computation into phases

All computations by all threads before the barrier
complete before any computation in any thread after
the barrier begins

• 47

Barrier

Barrier

Compute red cells

Compute black cells

P1 P2 P3 P4

 CMU 15-418/618, Fall 2019

int					n;															//	grid	size	
bool				done	=	false;	
float			diff	=	0.0;	
LOCK				myLock;	
BARRIER	myBarrier;	

//	allocate	grid	
float*	A	=	allocate(n+2,	n+2);	

void	solve(float*	A)	{	
			float	myDiff;		
			int	threadId	=	getThreadId();	
			int	myMin	=	1	+	(threadId	*	n	/	NUM_PROCESSORS);	
			int	myMax	=	myMin	+	(n	/	NUM_PROCESSORS)			
				
			while	(!done)	{	
					float	myDiff	=	0.f;	
					diff	=	0.f;	
					barrier(myBarrier,	NUM_PROCESSORS);	
					for	(j=myMin	to	myMax)	{	
								for	(i	=	red	cells	in	this	row)	{	
											float	prev	=	A[i,j];	
											A[i,j]	=	0.2f	*	(A[i-1,j]	+	A[i,j-1]	+	A[i,j]	+	
																												A[i+1,j],	A[i,j+1]);	
											myDiff	+=	abs(A[i,j]	-	prev));	
					}	
					lock(myLock);	
					diff	+=	myDiff;	
					unlock(myLock);	
					barrier(myBarrier,	NUM_PROCESSORS);	
					if	(diff/(n*n)	<	TOLERANCE)												//	check	convergence,	all	threads	get	same	answer	
									done	=	true;	
					barrier(myBarrier,	NUM_PROCESSORS);	
			}	
}

Shared address space solver (SPMD execution model)

• 48

Why are there three barriers?

Grid solver example from: Culler, Singh, and Gupta

 CMU 15-418/618, Fall 2019

Shared address space solver: one barrier
int					n;															//	grid	size	
bool				done	=	false;	
LOCK				myLock;	
BARRIER	myBarrier;	
float	diff[3];		//	global	diff,	but	now	3	copies	

float	*A	=	allocate(n+2,	n+2);	

void	solve(float*	A)	{	
		float	myDiff;			//	thread	local	variable	
		int	index	=	0;		//	thread	local	variable	

		diff[0]	=	0.0f;	
		barrier(myBarrier,	NUM_PROCESSORS);		//	one-time	only:	just	for	init	

		while	(!done)	{	
				myDiff	=	0.0f;	
				//	
				//	perform	computation	(accumulate	locally	into	myDiff)		
				//	
				lock(myLock);	
				diff[index]	+=	myDiff;				//	atomically	update	global	diff	
				unlock(myLock);	
				diff[(index+1)	%	3]	=	0.0f;	
				barrier(myBarrier,	NUM_PROCESSORS);	
				if	(diff[index]/(n*n)	<	TOLERANCE)	
						break;	
				index	=	(index	+	1)	%	3;	
		}	
}

• 49

Idea:
Remove dependencies by using different diff
variables in successive loop iterations

Trade off footprint for removing dependencies!
(a common parallel programming technique)

Grid solver example from: Culler, Singh, and Gupta

 CMU 15-418/618, Fall 2019

More on specifying dependencies
Barriers: simple, but conservative (coarse-granularity dependencies)
- All work in program up until this point (for all threads) must finish before any

thread begins next phase

Specifying specific dependencies can increase performance
(by revealing more parallelism)
- Example: two threads. One produces a result, the other consumes it.

• 50

//	produce	x,	then	let	T1	know	

x	=	1;	

flag	=	1;	

//	do	more	work	here...

//	do	stuff	independent	

//	of	x	here	

while	(flag	==	0);	

print	x;

T0 T1

▪ We just implemented a message queue (of length 1)

T0 T1

 CMU 15-418/618, Fall 2019

Data-parallel programming model
- Synchronization:
- Single logical thread of control, but iterations of forall loop may be

parallelized by the system (implicit barrier at end of forall loop body)

- Communication
- Implicit in loads and stores (like shared address space)
- Special built-in primitives for more complex communication patterns:

e.g., reduce

Shared address space
- Synchronization:
- Mutual exclusion required for shared variables (e.g., via locks)
- Barriers used to express dependencies (between phases of computation)

- Communication
- Implicit in loads/stores to shared variables

• 51

Solver implementation in two programming models

 CMU 15-418/618, Fall 2019

Message-passing expression of solver

• 52

 CMU 15-418/618, Fall 2019

Let’s think about expressing a parallel grid

Processor
Local Cache

Memory

Processor
Local Cache

Memory

Network

Each thread has its own address space

-No shared address space abstraction (i.e., no shared variables)

Threads communicate and synchronize by sending/receiving messages

• 53

One possible message passing machine configuration: a cluster of two workstations
(you could make this cluster yourself using the machines in the GHC labs)

Computer 1 Computer 2

 CMU 15-418/618, Fall 2019

Message passing model:
each thread operates in its own address space

In this figure: four threads

The grid data is partitioned into
four allocations, each residing
in one of the four unique
thread address spaces

(four per-thread private arrays)

• 54

Thread 1
Address

Space

Thread 2
Address

Space

Thread 3
Address

Space

Thread 4
Address

Space

 CMU 15-418/618, Fall 2019

Data replication is now required to correctly execute the program
Grid data stored in four separate address spaces (four private arrays)

• 55

Thread 1
Address

Space

Thread 3
Address

Space

Thread 4
Address

Space

“Ghost cells” are grid cells replicated from a remote
address space. It’s common to say that information
in ghost cells is “owned” by other threads.

Send row

Send row

Example:
After red cell processing is complete, thread 1 and
thread 3 send row of data to thread 2
(thread 2 requires up-to-date red cell information to
update black cells in the next phase)

float*	local_data	=	allocate(N+2,rows_per_thread+2);	

int	tid	=	get_thread_id();	
int	bytes	=	sizeof(float)	*	(N+2);	

//	receive	ghost	row	cells	(white	dots)	
recv(&local_data[0,0],	bytes,	tid-1);	
recv(&local_data[rows_per_thread+1,0],	bytes,	tid+1);	

//	Thread	2	now	has	data	necessary	to	perform	
//	future	computation

Thread 2
Address

Space

Thread 2 logic:

 CMU 15-418/618, Fall 2019

int	N;	
int	tid	=	get_thread_id();	
int	rows_per_thread	=	N	/	get_num_threads();	

float*	localA	=	allocate(rows_per_thread+2,	N+2);	

//	assume	localA	is	initialized	with	starting	values	
//	assume	MSG_ID_ROW,	MSG_ID_DONE,	MSG_ID_DIFF	are	constants	used	as	msg	ids	

//////////////////////////////////////	

void	solve()	{	
		bool	done	=	false;	
		while	(!done)	{	
				
				float	my_diff	=	0.0f;	

				if	(tid	!=	0)	
							send(&localA[1,0],	sizeof(float)*(N+2),	tid-1,	MSG_ID_ROW);	
				if	(tid	!=	get_num_threads()-1)	
							send(&localA[rows_per_thread,0],	sizeof(float)*(N+2),	tid+1,	MSG_ID_ROW);	
						
				if	(tid	!=	0)	
							recv(&localA[0,0],	sizeof(float)*(N+2),	tid-1,	MSG_ID_ROW);	
				if	(tid	!=	get_num_threads()-1)	
							recv(&localA[rows_per_thread+1,0],	sizeof(float)*(N+2),	tid+1,	MSG_ID_ROW);	

				for	(int	i=1;	i<rows_per_thread+1;	i++)	{	
							for	(int	j=1;	j<n+1;	j++)	{	
									float	prev	=	localA[i,j];	
									localA[i,j]	=	0.2	*	(localA[i-1,j]	+	localA[i,j]	+	localA[i+1,j]	+		
																														localA[i,j-1]	+	localA[i,j+1]);	
							my_diff	+=	fabs(localA[i,j]	-	prev);	
					}	
		}	

		if	(tid	!=	0)	{	
					send(&mydiff,	sizeof(float),	0,	MSG_ID_DIFF);	
					recv(&done,	sizeof(bool),	0,	MSG_ID_DONE);	
		}	else	{	
					float	remote_diff;	
					for	(int	i=1;	i<get_num_threads()-1;	i++)	{	
								recv(&remote_diff,	sizeof(float),	i,	MSG_ID_DIFF);	
								my_diff	+=	remote_diff;	
					}	
					if	(my_diff/(N*N)	<	TOLERANCE)	
							done	=	true;	
					for	(int	i=1;	i<get_num_threads()-1;	i++)	
							send(&done,	sizeof(bool),	i,	MSD_ID_DONE);	
		}		

		}	
}

Message passing solver

• 56

Send and receive ghost rows to “neighbor threads”

Perform computation
 (just like in shared address space version of solver)

All threads send local my_diff to thread 0

Thread 0 computes global diff, evaluates
termination predicate and sends result back to all

other threads

Similar structure to shared address space
solver, but now communication is explicit in
message sends and receives

Example pseudocode from: Culler, Singh, and Gupta

 CMU 15-418/618, Fall 2019

Notes on message passing example
Computation
- Array indexing is relative to local address space (not global grid coordinates)

Communication:
- Performed by sending and receiving messages
- Bulk transfer: communicate entire rows at a time (not individual elements)

Synchronization:
- Performed by sending and receiving messages
- Think of how to implement mutual exclusion, barriers, flags using messages

For convenience, message passing libraries often include higher-
level primitives (implemented via send and receive)

• 57

reduce_add(0,	&my_diff,	sizeof(float));								//	add	up	all	my_diffs,	return	result	to	thread	0	
if	(pid	==	0	&&	my_diff/(N*N)	<	TOLERANCE)	
			done	=	true;	
broadcast(0,	&done,	sizeof(bool),	MSG_DONE);		//	thread	0	sends	done	to	all	threads	

 CMU 15-418/618, Fall 2019

Synchronous (blocking) send and receive
send(): call returns when sender receives acknowledgement that message
data resides in address space of receiver

recv(): call returns when data from received message is copied into address
space of receiver and acknowledgement sent back to sender

• 58

Call SEND(foo)
Copy data from buffer ‘foo’ in sender’s address space into network buffer

Call RECV(bar)

Receive messageSend message
Copy data into buffer ‘bar’ in receiver’s address space
Send ack
RECV() returns

Receive ack
SEND() returns

Sender: Receiver:

 CMU 15-418/618, Fall 2019

As implemented on the prior slide, there is a big
problem with our message passing solver if it uses

synchronous send/recv!

Why?

How can we fix it?
(while still using synchronous send/recv)

• 59

 CMU 15-418/618, Fall 2019

int	N;	
int	tid	=	get_thread_id();	
int	rows_per_thread	=	N	/	get_num_threads();	

float*	localA	=	allocate(rows_per_thread+2,	N+2);	

//	assume	localA	is	initialized	with	starting	values	
//	assume	MSG_ID_ROW,	MSG_ID_DONE,	MSG_ID_DIFF	are	constants	used	as	msg	ids	

//////////////////////////////////////	

void	solve()	{	
		bool	done	=	false;	
		while	(!done)	{	
				
				float	my_diff	=	0.0f;	

				if	(tid	%	2	==	0)	{	
							sendDown();	recvDown();	
							sendUp();			recvUp();	
				}	else	{	
							recvUp();			sendUp();	
							recvDown();	sendDown();	
				}	

				for	(int	i=1;	i<rows_per_thread-1;	i++)	{	
							for	(int	j=1;	j<n+1;	j++)	{	
									float	prev	=	localA[i,j];	
									localA[i,j]	=	0.2	*	(localA[i-1,j]	+	localA[i,j]	+	localA[i+1,j]	+		
																														localA[i,j-1]	+	localA[i,j+1]);	
							my_diff	+=	fabs(localA[i,j]	-	prev);	
					}	
		}	

		if	(tid	!=	0)	{	
					send(&mydiff,	sizeof(float),	0,	MSG_ID_DIFF);	
					recv(&done,	sizeof(bool),	0,	MSG_ID_DONE);	
		}	else	{	
					float	remote_diff;	
					for	(int	i=1;	i<get_num_threads()-1;	i++)	{	
								recv(&remote_diff,	sizeof(float),	i,	MSG_ID_DIFF);	
								my_diff	+=	remote_diff;	
					}	
					if	(my_diff/(N*N)	<	TOLERANCE)	
							done	=	true;	
					if	(int	i=1;	i<gen_num_threads()-1;	i++)	
							send(&done,	sizeof(bool),	i,	MSD_ID_DONE);	
		}		

		}	
}

Send and receive ghost rows to “neighbor threads”
Even-numbered threads send, then receive

Odd-numbered thread recv, then send

Example pseudocode from: Culler, Singh, and Gupta

Message passing solver

• 60

T0

T1

T2

T3

T4

T5

time

send

send

send

send

send

send

send

send

send

send

 CMU 15-418/618, Fall 2019

Non-blocking asynchronous send/recv
send(): call returns immediately
- Buffer provided to send() cannot be modified by calling thread since message processing

occurs concurrently with thread execution

- Calling thread can perform other work while waiting for message to be sent

recv(): posts intent to receive in the future, returns immediately
- Use checksend(), checkrecv() to determine actual status of send/receipt

- Calling thread can perform other work while waiting for message to be received

• 61

Call SEND(foo)

Copy data from ‘foo’ into network buffer

Call RECV(bar)

Receive messageSend message
Messaging library copies data into ‘bar’

RECV(bar) returns handle h2SEND returns handle h1

Sender: Receiver:

Call CHECKSEND(h1) // if message sent, now safe for thread to modify ‘foo’ Call CHECKRECV(h2)
// if received, now safe for thread
// to access ‘bar’

RED TEXT = executes concurrently with application thread

 CMU 15-418/618, Fall 2019

Summary
Amdahl’s Law

- Overall maximum speedup from parallelism is limited by amount of
serial execution in a program

Aspects of creating a parallel program
- Decomposition to create independent work, assignment of work to

workers, orchestration (to coordinate processing of work by workers),
mapping to hardware

- We’ll talk a lot about making good decisions in each of these phases in
the coming lectures (in practice, they are very inter-related)

Focus today: identifying dependencies

Focus soon: identifying locality, reducing synchronization
• 62

