
Parallel Computer Architecture and Programming
CMU 15-418/15-618, Fall 2019

Lecture 16:

Scaling a Web Site
Scale-out Parallelism, Elasticity, and Caching

 CMU 15-418/618, Fall 2019

Today’s focus: the basics of scaling a web site

▪ I’m going to focus on performance issues
- Parallelism and locality

▪ Many other issues in developing a successful web platform
- Reliability, security, privacy, etc.
- There are other great courses at CMU for these topics

(distributed systems, databases, cloud computing)

 CMU 15-418/618, Fall 2019

A simple web server for static content

while	(1)		
{	

				request	=	wait_for_request();	

				filename	=	parse_request(request);	

				contents	=	read_file(filename);	

				send	contents	as	response	

}

Question: is site performance a question of throughput or latency?
(we’ll revisit this question later)

 CMU 15-418/618, Fall 2019

A simple parallel web server

Worker
Process 1

Parent Process

Worker
Process 2

Worker
Process N...

while	(1)		
{	
				request	=	wait_for_request();	

				filename	=	parse_request(request);	

				contents	=	read_file(filename);	

				send	contents	as	response	
}What factors would you consider in setting

the value of N for a multi-core web server?

▪ Parallelism: use all the server’s cores

▪ Latency hiding: hide long-latency disk read operations (by context switching between worker processes)

▪ Concurrency: many outstanding requests; service quick requests while long requests are in progress
▪ (e.g., large file transfer shouldn’t block serving index.html)

▪ Footprint: don’t want too many threads so that aggregate working set of all threads causes thrashing

 CMU 15-418/618, Fall 2019

Example: Apache’s parent process dynamically
manages size of worker pool

Worker
Process 1

Parent Process

Worker
Process 2

Worker
Process 3

Worker
Process 4

Worker
Process 5

Busy servicing
long request

Busy servicing
long request

New request

Desirable to maintain a few idle workers in
pool (avoid process creation in critical path

of servicing requests)

 CMU 15-418/618, Fall 2019

Limit maximum number of workers to avoid
excessive memory footprint (thrashing)

Worker
Process 1

Parent Process

Worker
Process 2

Worker
Process 3

Key parameter of Apache’s “prefork” multi-processing module: MaxRequestWorkers

Worker
Process 4

Worker
Process 5

Busy servicing
long request

Busy servicing
long request

New requestBusy servicing
request

Busy servicing
request

Busy servicing
request

Request queue

 CMU 15-418/618, Fall 2019

Aside: why partition server into processes, not threads?

▪ Protection
- Don’t want a crash in one worker to bring down the whole web server

- Often want to use non-thread safe libraries (e.g., third-party libraries) in
server operation

▪ Parent process can periodically recycle workers
(robustness to memory leaks)

▪ Of course, multi-threaded web server solutions exist as well
(e.g., Apache’s “worker” module)

 CMU 15-418/618, Fall 2019

Dynamic web content

Database
(e.g., mySQL)

PHP/Ruby/Python/Node.js
interpreter

Worker Process

Web Server

Worker Process

PHP/Ruby/Python/Node.js
interpreter

. . .

Requests

“Response” is not a static page on disk, but the result of
application logic running in response to a request.

 CMU 15-418/618, Fall 2019

Consider the amount of logic and
the number database queries
required to generate your
Facebook News Feed.

 CMU 15-418/618, Fall 2019

Scripting language performance (poor)

▪ Two popular content management systems (PHP)
- Wordpress ~ 12 requests/sec/core (DB size = 1000 posts)
- MediaWiki ~ 8 requests/sec/core

▪ Recent interest in making making scripted code execute faster
- Facebook’s HipHop: PHP to C source-to-source converter
- Google’s V8 Javascript engine: JIT Javascript to machine code

[Source: Talaria Inc., 2012]

 CMU 15-418/618, Fall 2019

“Scale out” to increase throughput

Database
(e.g., mySQL)

Worker Process

Web Server

Worker Process

. . .

Requests

Worker Process

Web Server

Worker Process

. . .

Worker Process

Web Server

Worker Process

. . .

. . .

Load Balancer

Use many web servers to meet site’s throughput goals.

Load balancer maintains list of available
web servers and an estimate of load on
each.

Distributes requests to pool of web servers.
(Redistribution logic is cheap: one load
balancer typically can service many web
servers)

 CMU 15-418/618, Fall 2019

Load balancing with persistence

Database
(e.g., mySQL)

Worker Process

Web Server

Worker Process

. . .

Requests

Worker Process

Web Server

Worker Process

. . .

Worker Process

Web Server

Worker Process

. . .

. . .

Load Balancer

All requests associated with a session are directed to the same server (aka. session affinity, “sticky sessions”)

map(sessionId, serverName)

1. SessionId = X

2. SessionId = Y

3. SessionId = X

4. SessionId = X

Session
State

Session
State

Session
State

1
3

4

2

Good:
- Do not have to change web-application

design to implement scale out
Bad:
- Stateful servers can limit load balancing

options. Also, session is lost if server fails

 CMU 15-418/618, Fall 2019

Desirable: avoid persistent state in web server

Database
(e.g., mySQL)

Requests

Load Balancer

Maintain stateless servers, treat sessions as persistent data to be stored in the DB.

1. SessionId = X

2. SessionId = Y

3. SessionId = X

4. SessionId = X

Session State

Worker Process

Web Server

Worker Process

. . .

Worker Process

Web Server

Worker Process

. . .

Worker Process

Web Server

Worker Process

. . .

. . .

 CMU 15-418/618, Fall 2019

Dealing with database contention

Database
(e.g., mySQL)

Requests

Load Balancer

Option 1: “scale up”: buy better hardware for database server, buy professional-grade DB that scales
(see database systems course by Prof. Pavlo)
Good: no change to software
Bad: High cost, limit to scaling

Worker Process

Web Server

Worker Process

. . .

Worker Process

Web Server

Worker Process

. . .

Worker Process

Web Server

Worker Process

. . .

. . .

 CMU 15-418/618, Fall 2019

Scaling out a database: replicate

Database
Services (writes)

Requests

Load Balancer

Replicate data and parallelize reads
(most DB accesses are reads)
Cost: extra storage, consistency issues

Worker Process

Web Server

Worker Process

. . .

Worker Process

Web Server

Worker Process

. . .

Worker Process

Web Server

Worker Process

. . .

. . .

Database Replica
Read only

Database Replica
Read only

Adopt relaxed consistency models:
propagate updates “eventually”

 CMU 15-418/618, Fall 2019

Scaling out a database: partition

Users photos
(reads and writes)

Requests

Load Balancer

Worker Process

Web Server

Worker Process

. . .

Worker Process

Web Server

Worker Process

. . .

Worker Process

Web Server

Worker Process

. . .

. . .

Users A-M profile
(reads and writes)

Users N-Z profile
(reads and writes)

Clickstream data
(writes)

Can tune database for access
characteristics of data stored
(common to use different database
implementations for different
workloads)

 CMU 15-418/618, Fall 2019

Intra-request parallelism

Page
Request

Load Balancer

Amount of user traffic is directly correlated to response latency.

See great post:
http://perspectives.mvdirona.com/2009/10/31/TheCostOfLatency.aspx

Worker Process
Web Server

Worker Process

. . .

Worker Process

Web Server

Worker Process

. . .

Worker Process

Web Server

Worker Process

. . .

. . .

Recommender Service

Notification/
Feed Aggregator

Advertising Service

Parallelize generation of a single page

 CMU 15-418/618, Fall 2019

How many web servers do you need?

 CMU 15-418/618, Fall 2019

Web traffic is bursty
Amazon.com Page Views HuffingtonPost.com Page Views Per Week

HuffingtonPost.com Page Views Per Day

(fewer people read news on weekends)

Holiday shopping season

More examples:
- Facebook gears up for bursts of image

uploads on Halloween and New Year’s Eve
- Twitter topics trend after world events

 CMU 15-418/618, Fall 2019

15-418/618 site traffic
Exam 1

Spring 2014

Spring 2015

Spring 2016

Spring 2016

34,436

24,132

Interesting 2016 fact: 10% fewer page views per
student (vs 2015) on the day before the exam.

 CMU 15-418/618, Fall 2019

Problem
▪ Site load is bursty

▪ Provisioning site for the average case load will result in poor
quality of service (or failures) during peak usage
- Peak usage tends to be when users care the most... since by the definition the

site is important at these times

▪ Provisioning site for the peak usage case will result in many
idle servers most of the time
- Not cost efficient (must pay for many servers, power/cooling, datacenter

space, etc.)

 CMU 15-418/618, Fall 2019

Elasticity!
▪ Main idea: site automatically adds or removes web

servers from worker pool based on measured load

▪ Need source of servers available on-demand
- Amazon.com EC2 instances
- Google Cloud Platform
- Microsoft Azure

 CMU 15-418/618, Fall 2019

Example: Amazon’s elastic compute cloud (EC2)
▪ Amazon had an over-provisioning problem

Amazon.com Page Views

▪ Solution: make machines available for rent to
others in need of compute
- For those that don’t want to incur cost of, or have

expertise to, manage own machines at scale
- For those that need elastic compute capability

 CMU 15-418/618, Fall 2019

Site configuration: normal load

Database
(potentially multiple

machines)

Requests

Load Balancer

Web Server

. . .

Perf. Monitor

Web Server

Web Server
DB Slave 1

DB Slave 2
Master

Load: moderate

 CMU 15-418/618, Fall 2019

Event triggers spike in load

Database
(potentially multiple

machines)

Requests

Load Balancer

Web Server

. . .

Web Server

Web Server
DB Slave 1

DB Slave 2
Master

@justinbieber: OMG, parallel
prog. class @ CMU is
awesome. Look 4 my final
project on hair sim. #15418

Heavily loaded servers: slow response times

Perf. Monitor
Load: high

 CMU 15-418/618, Fall 2019

Heavily loaded servers = slow response times
▪ If requests arrive faster than site can service them, queue lengths will grow
▪ Latency of servicing request is wait time in queue + time to actually process

request
- Assume site has capability to process R requests per second
- Assume queue length is L
- Time in queue = L/R

Worker
Process 1

Worker
Process 2

Worker
Process 3

Worker
Process 4

Worker
Process 5

Busy servicing
long request

Busy servicing
long request

New requestBusy servicing
request

Busy servicing
request

Busy servicing
request

Request queue

▪ How does site throughput change under heavy load?

 CMU 15-418/618, Fall 2019

Site configuration: high load

Database
(potentially multiple

machines)

Requests

Load Balancer

Web Server

. . .

Web Server

Web Server
DB Slave 1

DB Slave 2
Master

Web Server

Web Server

Web Server

Site performance monitor detects high load
Instantiates new web server instances
Informs load balancer about presence of new servers

Perf. Monitor
Load: moderate

 CMU 15-418/618, Fall 2019

Site configuration: return to normal load

Database
(potentially multiple

machines)

Requests

Load Balancer

Web Server

. . .

Web Server

Web Server
DB Slave 1

DB Slave 2
Master

Web Server

Web Server

Web Server

Site performance monitor detects low load
Released extra server instances (to save operating cost)
Informs load balancer about loss of servers

Perf. Monitor
Load: too low

@justinbieber: WTF,
parallel programming is 2
hrd. Buy my new album.

Note convenience of stateless servers in
elastic environment: can kill server
without loss of important information.

 CMU 15-418/618, Fall 2019

Today: many “turn-key” environment-in-a-box services
Offer elastic computing environments for web applications

CloudWatch+Auto Scaling
Amazon Elastic Beanstalk

 CMU 15-418/618, Fall 2019

The story so far: parallelism
scale out, scale out, scale out

(+ elasticity to be able to scale out on demand)

Now: reuse and locality

 CMU 15-418/618, Fall 2019

Recall: basic site configuration

DatabasePHP/Ruby/Python/Node.js
interpreter

Worker Process

Web Server

Requests

$query	=	"SELECT	*	FROM	users	WHERE	username=‘kayvonf’;	
$user	=	mysql_fetch_array(mysql_query($userquery));	
							
echo	“<div>”	.	$user[‘FirstName’]	.	“	“	.	$user[‘LastName’]	.	“</div>”;

Responses

PHP ‘user’ objectHTML ‘users’ table

Response Information Flow

<div>Kayvon Fatahalian</div>

Example PHP Code

 CMU 15-418/618, Fall 2019

Work repeated every page

$query	=	"SELECT	*	FROM	users	WHERE	username=‘kayvonf’;	
$user	=	mysql_fetch_array(mysql_query($userquery));	
							
echo	“<div>”	.	$user[‘FirstName’]	.	“	“	.	$user[‘LastName’]	.	“</div>”;

PHP ‘user’ objectHTML ‘users’ table

Response Information Flow

<div>Kayvon Fatahalian</div>

Example PHP Code

▪ Steps repeated to emit my name at the top of every page:

- Communicate with DB
- Perform query
- Marshall results from database into object model of scripting language
- Generate presentation
- etc...

Remember, DB can be hard to scale!

 CMU 15-418/618, Fall 2019

Solution: cache!

Database
(potentially multiple

machines)

Requests

Load Balancer . . .

Perf. Monitor Web Server

DB Slave 1

DB Slave 2
Master

Web Server

Web Server

Web Server

Memcached

▪ Cache commonly accessed objects
- Example: memcached, in memory key-value store (e.g., a big hash table)
- Reduces database load (fewer queries)
- Reduces web server load:

- Less data shuffling between DB response and scripting environment
- Store intermediate results of common processing

 CMU 15-418/618, Fall 2019

Caching example
userid	=	$_SESSION[‘userid’];	

check	if	memcache->get(userid)	retrieves	a	valid	user	object	

if	not:	
			make	expensive	database	query	
			add	resulting	object	into	cache	with	memcache->put(userid)	
			(so	future	requests	involving	this	user	can	skip	the	query)	

continue	with	request	processing	logic

▪ Of course, there is complexity associated with keeping caches in sync with data in
the DB in the presence of writes

- Must invalidate cache

- Very simple “first-step” solution: only cache read-only objects

- More realistic solutions provide some measure of consistency

- But we’ll leave this to your distributed computing and database courses

 CMU 15-418/618, Fall 2019

Site configuration

Database
(potentially multiple

machines)

Requests

Load Balancer . . .

Perf. Monitor Web Server

DB Slave 1

DB Slave 2
Master

Web Server

Web Server

Web Server

memcached servers
value = get(key)
put(key, value)

 CMU 15-418/618, Fall 2019

Example: Facebook memcached deployment

▪ Facebook, circa 2008
- 800 memcached servers
- 28 TB of cached data

▪ Performance
- 200,000 UDP requests per second @ 173 msec latency
- 300,000 UDP requests per second possible at

“unacceptable” latency

Source: https://www.facebook.com/note.php?note_id=39391378919

https://www.facebook.com/note.php?note_id=39391378919

 CMU 15-418/618, Fall 2019

More caching
▪ Cache web server responses (e.g. entire pages, pieces of pages)

- Reduce load on web servers
- Example: Varnish-Cache application “accelerator”

Database
(potentially multiple

machines)
Requests

Load Balancer . . .

Perf. Monitor
Web Server

DB Slave 1

DB Slave 2
Master

Web Server

Web Server

Web Server

Memcached servers

Front-End Cache

Front-End Cache

Front-End Cache

Front-End Cache

 CMU 15-418/618, Fall 2019

Caching using content distribution networks (CDNs)
▪ Serving large media assets can be expensive to serve (high bandwidth costs, tie up

web servers)
- E.g., images, streaming video

▪ Physical locality is important
- Higher bandwidth
- Lower latency

London Content Distribution Network
Source: http://www.telco2.net/blog/2008/11/amazon_cloudfront_yet_more_tra.html

http://www.telco2.net/blog/2008/11/amazon_cloudfront_yet_more_tra.html

 CMU 15-418/618, Fall 2019

CDN usage example (Facebook photos)

Image source URL: (you can definitely see this photo… try it!)
https://scontent-iad3-1.xx.fbcdn.net/hphotos-xfl1/t31.0-8/12628370_10153516598728897_3170992092621097770_o.jpg

Facebook page URL: (you can’t get here since you aren’t a friend on my photos access list)
https://www.facebook.com/photo.php?fbid=10153516598728897&set=a.279790798896.141301.722973896&type=3&theater

https://scontent-iad3-1.xx.fbcdn.net/hphotos-xfl1/t31.0-8/12628370_10153516598728897_3170992092621097770_o.jpg
https://www.facebook.com/photo.php?fbid=10153516598728897&set=a.279790798896.141301.722973896&type=3&theater

 CMU 15-418/618, Fall 2019

CDN integration

Media Requests

Database

Load Balancer . . .

Perf. Monitor
Web Server

DB Slave
1

Master

Memcached servers

Front-End Cache

Front-End Cache

Front-End Cache

Front-End Cache

Web Server

Web Server

Web Server

DB Slave
2

Local CDN
(Pittsburgh)

Local CDN
(San Francisco)

Page Requests

Page Requests

Media Requests

 CMU 15-418/618, Fall 2019

Summary: scaling modern web sites
▪ Use parallelism

- Scale-out parallelism: leverage many web servers to meet throughput demand
- Elastic scale-out: cost-effectively adapt to bursty load
- Scaling databases can be tricky (replicate, shard, partition by access pattern)

- Consistency issues on writes

▪ Exploit locality and reuse
- Cache everything (key-value stores)

- Cache the results of database access (reduce DB load)
- Cache computation results (reduce web server load)
- Cache the results of processing requests (reduce web server load)

- Localize cached data near users, especially for large media content (CDNs)

▪ Specialize implementations for performance
- Different forms of requests, different workload patterns
- Good example: different databases for different types of requests

 CMU 15-418/618, Fall 2019

Final comments
▪ It is true that performance of straight-line application logic is often very poor in web-

programming languages (orders of magnitude left on the table in Ruby and PHP).

▪ BUT... web development is not just quick hacking in slow scripting languages. Scaling a web
site is a very challenging parallel-systems problem that involves many of the optimization
techniques and design choices studied in this class: just at different scales

- Identifying parallelism and dependencies
- Workload balancing: static vs. dynamic partitioning issues
- Data duplication vs. contention
- Throughput vs. latency trade-offs
- Parallelism vs. footprint trade-offs
- Identifying and exploiting reuse and locality

▪ Many great sites (and blogs) on the web to learn more:
- www.highscalability.com has great case studies (see “All Time Favorites” section)
- James Hamilton’s blog: http://perspectives.mvdirona.com

http://www.highscalability.com
http://perspectives.mvdirona.com

 CMU 15-418/618, Fall 2019

Course so far review
(a more-or-less randomly selected collection of

topics from previous lectures)

 CMU 15-418/618, Fall 2019

Exam details
▪ Closed book, closed laptop

▪ One “post it” note (but we’ll let you use both sides)

▪ Covers all lecture material through memory consistency

 CMU 15-418/618, Fall 2019

Throughput vs. latency

THROUGHPUT

LATENCY

The rate at which work gets done.
- Operations per second
- Bytes per second (bandwidth)
- Tasks per hour

The amount of time for an operation to complete
- An instruction takes 4 clocks
- A cache miss takes 200 clocks to complete
- It takes 20 seconds for a program to complete

 CMU 15-418/618, Fall 2019

Ubiquitous parallelism
▪ What motivated the shift toward multi-core parallelism in

modern processor design?
- Inability to scale clock frequency due to power limits
- Diminishing returns when trying to further exploit ILP

Is the new performance focus
on throughput, or latency?

 CMU 15-418/618, Fall 2019

Techniques for exploiting independent operations in
applications

1. superscalar
execution

What is it? What is the benefit?
Processor executes multiple instructions per clock. Super-scalar execution
exploits instruction level parallelism (ILP). When instructions in the same
thread of control are independent they can be executed in parallel on a
super-scalar processor.

2. SIMD
execution

3. multi-core
execution

4. multi-threaded
execution

Processor executes the same instruction on multiple pieces of data at
once (e.g., one operation on vector registers). The cost of fetching and
decoding the instruction is amortized over many arithmetic operations.

A chip contains multiple (mainly) independent processing cores, each
capable of executing independent instruction streams.

Processor maintains execution contexts (state: e.g, a PC, registers, virtual
memory mappings) for multiple threads. Execution of thread instructions
is interleaved on the core over time. Multi-threading reduces processor
stalls by automatically switching to execute other threads when one
thread is blocked waiting for a long-latency operation to complete.

 CMU 15-418/618, Fall 2019

1. superscalar
execution

Who is responsible for mapping?
Usually not a programmer responsibility:
ILP automatically detected by processor hardware or by compiler (or both)
(But manual loop unrolling by a programmer can help)

2. SIMD
execution

3. multi-core
execution

4. multi-threaded
execution

In simple cases, data parallelism is automatically detected by the compiler, (e.g.,
assignment 1 saxpy). In practice, programmer explicitly describes SIMD execution
using vector instructions or by specifying independent execution in a high-level
language (e.g., ISPC gangs, CUDA)

Programmer defines independent threads of control.
e.g., pthreads, ISPC tasks, openMP #pragma

Programmer defines independent threads of control. But programmer
must create more threads than processing cores.

Techniques for exploiting independent operations in
applications

 CMU 15-418/618, Fall 2019

Frequently discussed processor examples
▪ Intel Core i7 CPU

- 4 cores
- Each core:

- Supports 2 threads (“Hyper-Threading”)
- Can issue 8-wide SIMD instructions (AVX instructions) or 4-wide SIMD instructions (SSE)
- Can execute multiple instructions per clock (superscalar)

▪ NVIDIA GTX 980 GPU
- 16 “cores” (called SMM core by NVIDIA)
- Each core:

- Supports up to 64 warps (warp is a group of 32 “CUDA threads”)
- Issues 32-wide SIMD instructions (same instruction for all 32 “CUDA threads” in a warp)
- Also capable of issuing multiple instructions per clock

▪ Intel Xeon Phi
- 61 cores
- Each core: supports 4 threads, issues 16-wide SIMD instructions

 CMU 15-418/618, Fall 2019

Multi-threaded, SIMD execution on GPU
= SIMD functional unit,
 control shared across 32 units
 (1 MUL-ADD per clock)

▪ Describe how CUDA threads are mapped to the execution resources on this GTX 980 GPU?
- e.g., describe how the processor executes instructions each clock

 CMU 15-418/618, Fall 2019

Decomposition: assignment 1, program 3
▪ You used ISPC to parallelize the Mandelbrot generation

▪ You created a bunch of tasks. How many? Why?

uniform	int	rowsPerTask	=	height	/	2;	

//	create	a	bunch	of	tasks	

launch[2]	mandelbrot_ispc_task(
															x0,	y0,	x1,	y1,	
															width,	height,	
															rowsPerTask,	
															maxIterations,	
															output);

 CMU 15-418/618, Fall 2019

Amdahl’s law
▪ Let S = the fraction of sequential execution that is inherently sequential

▪ Max speedup on P processors given by:

speedup

Processors

M
ax

 Sp
ee

du
p

S=0.01

S=0.05

S=0.1

 CMU 15-418/618, Fall 2019

Thought experiment
▪ Your boss gives your team a piece of code for which 25% of the operations

are inherently serial and instructs you to parallelize the application on a six-
core machines in GHC 3000. He expects you to achieve 5x speedup on this
application.

▪ Your friend shouts at your boss, “that is %#*$(%*!@ impossible”!

▪ Your boss shouts back, “I want employees with a can-do attitude! You
haven’t thought hard enough.”

▪ Who is right?

 CMU 15-418/618, Fall 2019

Work assignment Problem to solve

Subproblems
(“tasks”)

Threads
(or processors)

Decomposition

Assignment

STATIC
ASSIGNMENT

DYNAMIC
ASSIGNMENT

Assignment of subproblems to processors is determined before (or right
at the start) of execution. Assignment does not dependent on execution
behavior.

Assignment of subproblems to processors is determined as the program runs.

Good: very low (almost none) run-time overhead
Bad: execution time of subproblems must be predictable (so programmer
can statically balance load)

Good: can achieve balance load under unpredictable conditions
Bad: incurs runtime overhead to determine assignment

Examples: solver kernel, OCEAN, mandlebrot in asst 1, problem 1, ISPC foreach

Examples: ISPC tasks, executing grid of CUDA thread blocks on GPU,
assignment 3, shared work queue

 CMU 15-418/618, Fall 2019

Balancing the workload
Ideally all processors are computing all the time during program execution
(they are computing simultaneously, and they finish their portion of the work at the same time)

Load imbalance can significantly reduce overall speedup
Time P1 P2 P3 P4

 CMU 15-418/618, Fall 2019

Dynamic assignment using work queues

Worker threads:
Pull data from work queue
Push new work to queue as it’s created

T1 T2 T3 T4

Sub-problems
(aka “tasks”, “work”)

Shared work queue: a list of work to do
(for now, let’s assume each piece of work is independent)

 CMU 15-418/618, Fall 2019

Decomposition in assignment 2
▪ Most solutions decomposed the problem in several ways

- Decomposed screen into tiles (“task” per tile)
- Decomposed tile into per circle “tasks”
- Decomposed tile into per pixel “tasks”

 CMU 15-418/618, Fall 2019

Artifactual vs. inherent communication

ARTIFACTUAL
COMMUNICATION

INHERENT
COMMUNICATION

FALSE SHARING

P1 P2

Cache line

Problem assignment as shown. Each processor
reads/writes only from its local data.

 CMU 15-418/618, Fall 2019

Programming model abstractions

1. shared
address space

Communication?

Implicit: loads and stores to
shared variables

2. message
passing

3. data-parallel

Sync?

Synchronization primitives
such as locks and barriers

Structure?

Multiple processors
sharing an address
space.

Multiple processors,
each with own memory
address space.

Explicit: send and receive
messages

Build synchronization out
of messages.

Rigid program
structure: single logical
thread containing
map(f,	collection)
where “iterations” of
the map can be
executed concurrently

Typically not allowed
within map except
through special built-in
primitives (like
“reduce”). Comm
implicit through loads
and stores to address
space

Implicit barrier at the
beginning and end of
the map.

 CMU 15-418/618, Fall 2019

Cache coherence

Why cache coherence?
Hand-wavy answer: would like shared memory to behave “intuitively” when two
processors read and write to a shared variable. Reading a value after another processor
writes to it should return the new value. (despite replication due to caches)

Requirements of a coherent address space
1. A read by processor P to address X that follows a write by P to address X, should return the value of the

write by P (assuming no other processor wrote to X in between)

2. A read by a processor to address X that follows a write by another processor to X returns the written value...
if the read and write are sufficiently separated in time (assuming no other write to X occurs in between)

3. Writes to the same location are serialized; two writes to the same location by any two processors are seen
in the same order by all processors.
(Example: if values 1 and then 2 are written to address X, no processor observes 2 before 1)

Condition 1: program order (as expected of a uniprocessor system)

Condition 2: write propagation: The news of the write has to eventually get to the other processors. Note that
 precisely when it is propagated is not defined by definition of coherence.

Condition 3: write serialization

 CMU 15-418/618, Fall 2019

Implementing cache coherence

Main idea of invalidation-based protocols: before
writing to a cache line, obtain exclusive access to it

SNOOPING Each cache broadcasts its cache misses to all other caches. Waits for other
caches to react before continuing.

DIRECTORIES Information about location of cache line and number of shares is stored in a
centralized location. On a miss, requesting cache queries the directory to
find sharers and communicates with these nodes using point-to-point
messages.

Good: simple, low latency
Bad: broadcast traffic limits scalability

Good: coherence traffic scales with number of sharers, and number of
sharers is usually low
Bad: higher complexity, overhead of directory storage, additional latency
due to longer critical path

 CMU 15-418/618, Fall 2019

MSI state transition diagram

S
(Shared)

M
(Modified)

PrRd / --
PrWr / --

PrRd / BusRd

BusRd / flush

Broadcast (bus) initiated transaction

Processor initiated transaction

A / B: if action A is observed by cache controller, action B is taken

I
(Invalid)

PrWr / BusRdX

PrWr / BusRdX

PrRd / -- BusRdX / --

BusRdX / flush

BusRd / --

