Lecture 16:

Scaling a Web Site

Scale-out Parallelism, Elasticity, and Caching

Parallel Computer Architecture and Programming
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Today’s focus: the basics of scaling a web site

B |'m going to focus on performance issues
- Parallelism and locality

m Many other issues in developing a successful web platform
- Reliability, security, privacy, etc.

- There are other great courses at CMU for these topics
(distributed systems, databases, cloud computing)
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A simple web server for static content

while (1)
{

request = wait_for_request();
filename = parse_request(request);
contents = read file(filename);

send contents as response

Question: is site performance a question of throughput or latency?
(we’ll revisit this question later)
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A simple parallel web server

Parent Process

Worker
Process 1

Worker
Process 2

What factors would you consider in setting
the value of N for a multi-core web server?

N

Worker
Process |\

m Parallelism: use all the server’s cores

request = wait_for_request();

while (1)

{
filename
contents

parse_request(request);

read_file(filename);

send contents as response

m Latency hiding: hide long-latency disk read operations (by context switching hetween worker processes)
m Concurrency: many outstanding requests; service quick requests while long requests are in progress

m (e.g., large file transfer shouldn’t block serving index.html)
m Footprint: don’t want too many threads so that aggregate working set of all threads causes thrashing
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Example: Apache’s parent process dynamically
manages size of worker pool

Parent Process
Worker Worker : Worker E : Worker E : Worker E
Process 1 Process 2 . Process3 ! 1 Process4 ' :+ Process5 !
o I Lo .
4 Desirable to maintain a few idle workers in
pool (avoid process creation in critical path
Busy servicing Busy servicing New requestl of servicing requests)
long request long request 0
]
[]
]
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Limit maximum number of workers to avoid
excessive memory footprint (thrashing)

Parent Process
/ / N Request queue
Worker Worker Worker Worker Worker
Process 1 Process 2 Process 3 Process 4 Process 5
Busy servicing Busy servicing Busy servicing Busy servicing Busy servicing New request -
long request long request request request request 0
[
[
[

Key parameter of Apache’s “prefork” multi-processing module: MaxRequestiorkers
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Aside: why partition server into processes, not threads?

B Protection

- Don’t want a crash in one worker to bring down the whole web server

- Often want to use non-thread safe libraries (e.g., third-party libraries) in
server operation

m Parent process can periodically recycle workers
(robustness to memory leaks)

m Of course, multi-threaded web server solutions exist as well
(e.g., Apache’s “worker” module)
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Dynamic web content

Web Server

Worker Process
Requests

- o e wm wm e PHP/Ruby/Python/Node.js
> interpreter

Database
(e.g., mySQL)

Worker Process

s PHP/Ruby/Python/Node.js | | >
interpreter

“Response” is not a static page on disk, but the result of
application logic running in response to a request.
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Like - Comment - 2 hours ago -
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irresistible urge to jump in and fix it myself.

¥ Like - Comment -m Twitter - 16 hours ago via Twitter

&9 Brian Park likes this.

Write a comment...

-‘aooed a route on MapMyRUN.com.
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Scripting language performance (poor)

m Two popular content management systems (PHP)

- Wordpress ~ 12 requests/sec/core (DB size = 1000 posts)
- MediaWiki ~ 8 requests/sec/core

[Source: Talaria Inc., 2012]

m Recent interest in making making scripted code execute faster

- Facebook’s HipHop: PHP to C source-to-source converter
- Google’s V8 Javascript engine: JIT Javascript to machine code
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“Scale out” to increase throughput

Use many web servers to meet site’s throughput goals.

Web Server
Worker Process
1 :
q °
,' Worker Process
A |
' o
49 ¢
Requests " " Web Server
....... ¢
:: "i Worker Process
Load Balancer “ ~ :
....... > A O :
------- = “ b Worker Process
| |
| |
) |
Load balancer maintains list of available “
web servers and an estimate of load on \
each. “ Web Server
k Worker P
| OrKer rrocess
Distributes requests to pool of web servers. Y .
(Redistribution logic is cheap: one load :
Worker Process

balancer typically can service many web
servers)

T

Database
(e.g., mySQL)
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Load balancing with persistence

All requests associated with a session are directed to the same server (aka. session affinity, “sticky sessions”)

Web Server Session
4 Worker Process State
1. :
’ 3"
,' K 4 Worker Process
0 " ¢ A \
y 4 -
equests v, o Session
i l S_ess_iorlld_=£ ,1' ,' Web Server State
2.Sessionld =Y > ,':'/ Worker Process “—_
3 Sessionld — X Load Balancer |* : \
' Worker Process <
4. Sess |o ld=X '
'
map(sessionld, serverName) “
'
' 2 .
“ Web Server Session
Good: . State
- Do not have to change web-application . Worker Process g
design to implement scale out X
Bad: o . Worker Process
- Stateful servers can limit load balancing

options. Also, session is lost if server fails

Database
(e.g., mySQL)
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1> 1w 1IN 1=

Desirable: avoid persistent state in web server

Maintain stateless servers, treat sessions as persistent data to be stored in the DB.

Requests

Sessionld =X
S_ess_ioEId_=x
S_ess_ionlld_= 5
S_ess_iorlld_= 5

vVVvVYVYYy

Load Balancer

Web Server
Worker Process
<! .
’ 5
’
’ Worker Process
¢ A
1 o
¢ 0
YA
R Web Server
Y 2K 4
v ? Worker Process
¢
& o
] N °
RN .
“ Worker Process
'\
'\
'\
'
.
1
'\
N Web Server
'\
'\ Worker Process
Y .
o
o
Worker Process

T

Session State

Database
(e.g., mySQL)
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Dealing with database contention

Option 1: “scale up”: buy better hardware for database server, buy professional-grade DB that scales

(see database systems course by Prof. Pavlo)

Good: no change to software

Bad: High cost, limit to scaling

Requests

Load Balancer

Web Server

Worker Process

Worker Process

Web Server

Worker Process

Worker Process

Web Server

Worker Process

Worker Process

T

Database
(e.g., mySQL)
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Scaling out a database: replicate

Replicate data and parallelize reads Adopt relaxed consistency models:

(most DB accesses are reads) propagate updates “eventually”,
Cost: extra storage, consistency issues Web Server ;
Worker Process
* . \ ; ;
’ > Database Replica
:' Worker Process + Read only
¢ A
Requests R
', Web Server Database Replica
> " ¢ o E
=== == ¢
,"' Worker Process Read only
i Load Balancer |: :
e e e o : N ~ - ()
> “ » Worker Process
'
'
.
! * Database
“ Services (writes)
. Web Server
.
. Worker Process
Worker Process
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Scaling out a database: partition

Web Server
Worker Process
* :
q °
! 4
’ Worker Process
¢ A
Requests . R
]9 ¢
e ,', Web Server
," Worker Process
Il B IH =H = = '
> Load Balancer | : . - >
B B O N = % - N 2
> “ » Worker Process
|
|
|
|
 }
|
Can tune database for access ' Web Server
characteristics of data stored % Worker Process
(common to use different database | :
implementations for different -
Worker Process

workloads)

Clickstream data
(writes)

Users A-M profile
(reads and writes)

Users N-Z profile
(reads and writes)

Users photos
(reads and writes)
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Intra-request parallelism

am azon _ Kewon's Amzzon com  Todays Czals

Parallelize generation of a single page

Web Server

Worker Process

Worker Process

Page
Request

= = = = | Load Balancer

Web Server

Worker Process

Worker Process

Amount of user trafficis directly correlated to response latency.

See great post:

Web Server

Worker Process
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How many web servers do you need?
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Web trafficis bursty

Amazon.com Page Views HuffingtonPost.com Page Views Per Week

Daily Pageviews (percent)
damazon.com

Directly Measured quontcast

25M

20M

’e W B -

A
0 : . L . : . I | o 2/2012 3/2012
2011 2012
Holiday shopping season HuffingtonPost.com Page Views Per Day
- Directly Measured qUOXNtcast
More examples:

2/2012 3/2012

- Facebook gears up for bursts of image
uploads on Halloween and New Year’s Eve
- Twitter topics trend after world events

(fewer people read news on weekends)
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15-418/618 site traffic

Spring 2014 Exam 1
® Pageviews
Spring 2015
® Pageviews
30,000 24,132
Spring 2016
® Pageviews Interesting 2016 fact: 10% fewer page views per
0,008 student (vs 2015) on the day before the exam.
34,436

25,000

an 22

an 29

Feb 5 Feb 12 Feb 19 Feb 26
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Problem

m Site load is bursty

m Provisioning site for the average case load will result in poor
quality of service (or failures) during peak usage

- Peak usage tends to be when users care the most... since by the definition the
site is important at these times

B Provisioning site for the peak usage case will result in many
idle servers most of the time

- Not cost efficient (must pay for many servers, power/cooling, datacenter
space, etc.)
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Elasticity!

Main idea: site automatically adds or removes web
servers from worker pool based on measured load

Need source of servers available on-demand amazon
- Amazon.com EC2 instances
') Google Cloud Platform

- Google Cloud Platform
- Microsoft Azure

BR Microsoft Azure
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Example: Amazon’s elastic compute cloud (EC2)

®  Amazon had an over-provisioning problem

B Solution: make machines available for rent to

others in need of compute

- For those that don’t want to incur cost of, or have

expertise to, manage own machines at scale
- For those that need elastic compute capability

c4.large
c4.xlarge
c4.2xlarge
c4.4xlarge
c4.8xlarge
c3.large
c3.xlarge
c3.2xlarge
c3.4xlarge

c3.8xlarge

g2.2xlarge

g2.8xlarge

vCPU

2

4

8

16

36

2

4

8

16

32

8

32

ECU

Compute Optimized - Current Generation

8

16

31

62

132

7

14

28

95

108

GPU Instances - Current Generation

26

104

Amazon.com Page Views

Daily Pageviews (percent)

damazon. com

0.5

- J\r"’
;/Jm\‘”"w‘w‘\ -\""\“-WWM

L —
.} ‘V‘J'U-\;%ﬂ

0 | l
2011 2012
Memory (GiB) Instance Storage (GB) Linux/UNIX Usage

3.75 EBS Only $0.105 per Hour
7.5 EBS Only $0.209 per Hour
i EBS Only $0.419 per Hour
30 EBS Only $0.838 per Hour
60 EBS Only $1.675 per Hour

3.75 2 x 16 SSD $0.105 per Hour
7.5 2 x40 SSD $0.21 per Hour
15 2 x 80 SSD $0.42 per Hour
30 2 x 160 SSD $0.84 per Hour
60 2 x 320 SSD $1.68 per Hour
15 60 SSD $0.65 per Hour
60 2 x120 SSD $2.6 per Hour
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Site configuration: normal load

Requests

Perf. Monitor
Load: moderate

Load Balancer

Web Server

Database
(potentially multiple
machines)

Web Server

DB Slave 1

Master

DB Slave 2

Web Server
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Event triggers spike in load

@justinbieber: OMG, parallel
prog. class @ CMU is
awesome. Look 4 my final

Requests . -
project on hair sim. #15418
------- >
"""" P | Pperf. Monitor
_______ > Load: high > D?tabase |
> L *, Web Server (potentlally multiple
-------
RIPLT \ machines)
_______ .> ¢' g
_______ > Load Balancer ’::- :. . I Web Server DB Slave 1
RN : Master
....... 5 “s: . DB Slave 2
....... >
\‘s:
"""" > ¢ Web Server
> |
------- * [ ) [ )
_______ > Heavily loaded servers: slow response times
------- >
------- >
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Heavily loaded servers = slow response times

B [frequests arrive faster than site can service them, queue lengths will grow

B Latency of servicing request is wait time in queue + time to actually process
request

- Assume site has capability to process R requests per second
- Assume queue lengthis L
- Timein queue=L/R

B How does site throughput change under heavy load?

Request queue
Worker Worker Worker Worker Worker
Process 1 Process 2 Process 3 Process 4 Process 5
Busy servicing Busy servicing Busy servicing Busy servicing Busy servicing New request
long request long request request request request
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Site configuration: high load

Site performance monitor detects high load
Instantiates new web server instances
Informs load balancer about presence of new servers

Requests
....... >
Web Server
"""" ¥ | Perf. Monitor ,’
_______ > Load: moderate ’ Database
' ° °
> Re . > 4 Web Server (potentla::y ml;ltlple
....... L, machines
------- ’:':’,4 \
_______ Load Balancer :-';:::: Web Server DB Slave 1
3: Master
....... > \‘3 . . DB Slave 2
\ } $ °

S

------- * “‘ “ S [
“ SRR

""""" = YR “ Web Server
....... > K
"""" > ‘\ * Web Server

. .
....... > R

\ fereeeeeeseemeeneeiesceceeeneeneaes

"""" > * Web Server §
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Site configuration: return to normal load

Site performance monitor detects low load
Released extra server instances (to save operating cost)
Informs load balancer about loss of servers

@justinbieber: WTF,
parallel programming is 2

hrd. Buy my new album.
"'-".",".".' """"""""" _ Y
|
. : gt Mh“ﬂ’gr. o B :
Perf. Monitor gn8® TR "uy:
Requests Load: too low Database
N Web Server (potentially multiple
LR ¢"" machines)
L 4
-------* ¢"¢'
DB Slave 1
e Load Balancer LT N Web Server
§: Master
-------* :‘s () DBSlaVEZ
S °
O
. S
. 4
“ Web Server
AL Y ;'_"."-"-"""
Note convenience of statelessserversin | Webbeni
. . . E . Ny
elastic environment: can kill server :‘::'::':::::::::::::::::::::::::::::::':::'
o o o o ' .
without loss of important information. ...."V\H) P |=,gr.--"
: g8 ?® ng,
1!11? ....................... f:ﬂ!-
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Today: many “turn-key” environment-in-a-box services

Offer elastic computing environments for web applications

Google
amazon S . ‘
web services" & - RIGHT SCdLe
CloudWatch+Auto Scaling g~
Amazon Elastic Beanstalk < 2

F) GOOS[G Cloud Platform
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The story so far: parallelism
scale out, scale out, scale out

(+ elasticity to be able to scale out on demand)

Now: reuse and locality
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Recall: basic site configuration

Web Server
Requests
- == Worker Process
il PHP/Ruby/Python/Node.js | [ > JEIEL AR
interpreter
Responses
B
B
Example PHP Code

'$query = "SELECT * FROM users WHERE username=‘kayvonf’;
$user = mysql_fetch_array(mysql_query($userquery));

Eecho “div>” . $user[ ‘FirstName’] . “ “ . $user[ ‘LastName’] . “</div>”;i

Response Information Flow

HTML PHP ‘user’ object ‘users’ table

<div>Kayvon Fatahalian</div>
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Work repeated every page

Example PHP Code

Hello, Ka j
Your Account v \_.,Cart v

'$query = "SELECT * FROM users WHERE username=‘kayvonf’;
$user = mysql_fetch_array(mysql_query($userquery));

recho “<div>” . $user[‘FirstName’] . “ “ . $user[ ‘LastName’] . “</div>”;i

B Steps repeated to emit my name at the top of every page:

HTML

Response Information Flow

PHP ‘user’ object

<div>Kayvon Fatahalian</div>

Communicate with DB

Perform query

‘users’ table

Remember, DB can be hard to scale!

Marshall results from database into object model of scripting language
Generate presentation

etc...
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Solution: cache!

m (ache commonly accessed objects

- Example: memcached, in memory key-value store (e.g., a big hash table)

- Reduces database load (fewer queries)

- Reduces web server load:

Requests

Perf. Monitor

Load Balancer

Web Server

- Less data shuffling between DB response and scripting environment
- Store intermediate results of common processing

Web Server

Web Server

Web Server

7
—

Memcached

Database
(potentially multiple
machines)

DB Slave 1

Master

DB Slave 2

CMU 15-418/618, Fall 2019



Caching example

userid = $ SESSION[ ‘userid’];

check if memcache->get(userid) retrieves a valid user object

if not:
make expensive database query
add resulting object into cache with memcache->put(userid)
(so future requests involving this user can skip the query)

continue with request processing logic

m Of course, there is complexity associated with keeping caches in sync with data in
the DB in the presence of writes

- Must invalidate cache
- Very simple “first-step” solution: only cache read-only objects
- More realistic solutions provide some measure of consistency

- But we'll leave this to your distributed computing and database courses
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Site configuration

Requests

Perf. Monitor

Load Balancer

memcached servers
value = get(key)
put(key, value)
Web Server
Database
Web Server . (potentially multiple
machines)
Web S .
o0 Server DB Slave 1
Master
DB Slave 2
Web Server /
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Example: Facebook memcached deployment

® Facebook, circa 2008

- 800 memcached servers
- 28 TB of cached data

m Performance
- 200,000 UDP requests per second @ 173 msec latency

- 300,000 UDP requests per second possible at
“unacceptable” latency

Source: https://www.facebook.com/note.php?note_id=39391378919
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More caching

m (Cache web server responses (e.g. entire pages, pieces of pages)
- Reduce load on web servers

- Example: Varnish-Cache application “accelerator”
o © VARNISH

Requests

Perf. Monitor

Load Balancer

CACHE

Front-End Cache |-

Front-End Cache

Front-End Cache |*

Front-End Cache

- P Web Server
Web Server
- =P Web Server
Web Server

Memcached servers

Database
(potentially multiple
machines)

DB Slave 1

Master

DB Slave 2
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Caching using content distribution networks (CDNs)

® Serving large media assets can be expensive to serve (high bandwidth costs, tie up
web servers)

- E.g.,images, streaming video @@ e
. o 4 @ cloudfront
m Physical locality is important /}'/, O
- Higher bandwidth A
- Lower latency 7

Soe © i‘ O

Edge Location
Location

_______

London Content Distribution Network
Source: http://www.telco2.net/blog/2008/11/amazon_cloudfront_yet_more_tra.htmi

CMU 15-418/618, Fall 2019


http://www.telco2.net/blog/2008/11/amazon_cloudfront_yet_more_tra.html

CDN usage example (Facebook photos)

' q * ' ' 4 . ” A’ . t 7 —
.-.--. ,m.v- ) g EA T , .',- 5 BN Ty Kayvon Falahalian
A N TR A 1-- RE s - g
SRR S .‘:‘;: v [ . Cra L W, -
- J L b L% A _ » ! .’ .
e s .’:“'. :;“"{- ','f‘» ¥ ',__ A : s ", . . -
R e - e 4 [ ) BN VYL . . & s
¥ LU O AN RN AT g R ) §
N : v v S I : 1 > 4 ! £ ' v - -
N e S0 < FA5 ' Acd a descrintion
e .‘ l: ; ‘,\ - . P
. s

@ Tag Phota 9 Add Location # Edit

Like Comment Share

Facebook page URL: (you can’t get here since you aren’t a friend on my photos access list)
https://www.facebook.com/photo.php?fbid=10153516598728897&set=a.279790798896.141301.722973896&type=3&theater

Image source URL: (you can definitely see this photo... tryit!)
https://scontent-iad3-1.xx.fbcdn.net/hphotos-xfl1/t31.0-8/12628370_10153516598728897 3170992092621097770_o.jpg
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CDN integration

83

P

il sl > | (Pittshurgh)
age Requests
: 5 o o«
: ; P Perf. Monitor
: : L ,':‘
E : IREE ,"'ﬂ
: s === > re
T _: Load Balancer | ;
e > o
: |mmmmmmmsmmssmmmmmes > s
. Page Requests EERE = |
E gy iy E Local CDN

'} — - - < (San Francisco)

<

rJ, (J’ Media Requests

Media Requests

e 2 Local CDN

Front-End Cache

Front-End Cache

Front-End Cache

Front-End Cache

Memcached servers

Database

DB Slave
1

- Web Server

Web Server

- = Web Server
Web Server

Master

DB Slave
2
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Summary: scaling modern web sites

m Use parallelism

- Scale-out parallelism: leverage many web servers to meet throughput demand
- Elastic scale-out: cost-effectively adapt to bursty load
- Scaling databases can be tricky (replicate, shard, partition by access pattern)

- Consistency issues on writes

m Exploit locality and reuse

- (Cache everything (key-value stores)
- (Cache the results of database access (reduce DB load)
- (Cache computation results (reduce web server load)
- (Cache the results of processing requests (reduce web server load)

- Localize cached data near users, especially for large media content (CDNs)

m Specialize implementations for performance

- Different forms of requests, different workload patterns

- Good example: different databases for different types of requests
(MU 15-418/618, Fall 2019



Final comments

B |tis true that performance of straight-line application logic is often very poor in web-
programming languages (orders of magnitude left on the table in Ruby and PHP).

B BUT... web development is not just quick hacking in slow scripting languages. Scaling a web
site is a very challenging parallel-systems problem that involves many of the optimization
techniques and design choices studied in this class: just at different scales

- ldentifying parallelism and dependencies

- Workload balancing: static vs. dynamic partitioning issues
- Data duplication vs. contention

- Throughput vs. latency trade-offs

- Parallelism vs. footprint trade-offs

- Identifying and exploiting reuse and locality

B Many great sites (and blogs) on the web to learn more:
- www.highscalability.com has great case studies (see “All Time Favorites” section)
- James Hamilton’s blog: http://perspectives.mvdirona.com
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Course so far review

(a more-or-less randomly selected collection of
topics from previous lectures)
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Exam details

B (losed book, closed laptop
B One“postit” note (but we'll let you use both sides)

m (overs all lecture material through memory consistency

o
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Throughput vs. latency

THROUGHPUT The rate at which work gets done.

— Operations per second
— Bytes per second (handwidth)
— Tasks per hour

LATENCY The amount of time for an operation to complete
— Aninstruction takes 4 clocks
— A cache miss takes 200 clocks to complete
— It takes 20 seconds for a program to complete
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Ubiquitous parallelism

B What motivated the shift toward multi-core parallelism in

modern processor design?

- Inability to scale clock frequency due to power limits
- Diminishing returns when trying to further exploit ILP

10,000,000

Dual-Core ltanium 2 =
Intel CPU Trends §

(sources: Intel, Wikipedia, K. Olukotun)

1,000,000

100,000

Is the new performance focus
on throughput, or latency?

10,000

1,000

100

10

1

m Transistors (000) |
@ Clock Speed (NMKz)
A Power (W)

@ Perf [Clock (ILP)

0
1970 1975 1980 1985 1990 1995 2000 2005 2010
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Techniques for exploiting independent operations in

applications

What is it? What is the benefit?

1. superscalar
execution

Processor executes multiple instructions per clock. Super-scalar execution
exploits instruction level parallelism (ILP). When instructions in the same
thread of control are independent they can be executed in parallelon a
super-scalar processor.

2. SIMD
execution

Processor executes the same instruction on multiple pieces of data at
once (e.g., one operation on vector registers). The cost of fetching and
decoding the instruction is amortized over many arithmetic operations.

3. multi-core
execution

A chip contains multiple (mainly) independent processing cores, each
capable of executing independent instruction streams.

4. multi-threaded
execution

Processor maintains execution contexts (state: e.g, a PC, registers, virtual
memory mappings) for multiple threads. Execution of thread instructions
is interleaved on the core over time. Multi-threading reduces processor
stalls by automatically switching to execute other threads when one
thread is blocked waiting for a long-latency operation to complete.
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Techniques for exploiting independent operations in

applications | | |
Who is responsible for mapping?

Usually not a programmer responsibility:
1 » SU pe Isca Ia J ILP automatically detected by processor hardware or by compiler (or both)
: (But manual loop unrolling by a programmer can help)
execution pUnTOTINg By 4 prog i
2 S I M D In simple cases, data parallelism is automatically detected by the compiler, (e.g.,
* assignment 1 saxpy). In practice, programmer explicitly describes SIMD execution
o using vector instructions or by specifying independent execution in a high-level
EXECUtI on language (e.g., ISPC gangs, CUDA)
3 Programmer defines independent threads of control.
3. multi-core 9 "

e.g., pthreads, ISPC tasks, openMP #pragma

execution

4‘ mu Iti _th rea d ed Programmer defines independent thre.ads of control. But programmer
must create more threads than processing cores.
execution
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Frequently discussed processor examples

m |ntel Corei7 CPU

- 4 cores

- Each core:
- Supports 2 threads (“Hyper-Threading”)
- Canissue 8-wide SIMD instructions (AVX instructions) or 4-wide SIMD instructions (SSE)
- (Can execute multiple instructions per clock (superscalar)

m NVIDIA GTX 980 GPU

- 16 “cores” (called SMM core by NVIDIA)

- Each core:
- Supports up to 64 warps (warp is a group of 32 “CUDA threads”)
- Issues 32-wide SIMD instructions (same instruction for all 32 “CUDA threads” in a warp)
- Also capable of issuing multiple instructions per clock

B |[ntel Xeon Phi

- 61 cores
- Each core: supports 4 threads, issues 16-wide SIMD instructions
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Multi-threaded, SIMD execution on GPU

Warp 0 L | 3] 120 12 | | | 2 | () L) | ) 2 | )
Warp 1 | | o o O O
Warp 2
_ | f (| f{ | { O {  O {  {  O  | I
«ch/ || Fech | OO0 0000000000000
Warp execution Warpseector Ol O] O} O] O] O O] |[O | O 1O (O] | OO (O |5
contexts L1 cache NN | OO | O |
(max 64) |
(256 KB) O0Ooooodooooaoos
] | o | o o o |
Warp Selector
code Jecode “Shared” memory
Warp Selector (96 KB)
Warp 63 L1 cache

= SIMD functional unit,
control shared across 32 units
(1 MUL-ADD per clock)

Describe how CUDA threads are mapped to the execution resources on this GTX 980 GPU?
- e.g., describe how the processor executes instructions each clock
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Decomposition: assignment 1, program 3

m You used ISPC to parallelize the Mandelbrot generation
m You created a bunch of tasks. How many? Why?

uniform int rowsPerTask = height / 2;
// create a bunch of tasks

launch[2] mandelbrot _ispc_task(
x0, yo, x1, yi,
width, height,
rowsPerTask,
maxIterations,
output);
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Amdahl’s law

Let .S = the fraction of sequential execution that is inherently sequential

B Max speedup on P processors given hy:

speedup <
-5
S +
5=0.01
240 P
+32
Q.
Exe
)
D
=1
(V)
s
E 1lis S—0.0S
| 5=0.1
+8
8 16 24 32 40 48 56 64
- + - - + + + ~ + + - + + + - + + - + + + - + + - + — >

Processors
(MU 15-418/618, Fall 2019



Thought experiment

® Your boss gives your team a piece of code for which 25% of the operations
are inherently serial and instructs you to parallelize the application on a six-

core machines in GHC 3000. He expects you to achieve 5x speedup on this
application.

® Your friend shouts at your boss, “that is %#*$(%*!@ impossible”!

® Your boss shouts back, “l want employees with a can-do attitude! You
haven't thought hard enough.”

B Whoisright?
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Work assignment

STATIC
ASSIGNMENT

DYNAMIC
ASSIGNMENT

[ Problem to solve J
" Decomposition

Subproblems ( ) C ) ( ) C ) ( ) Q
(asksy ()OO C_ D DC( )

Threads {773 {777 fTTRD ¢TTTRD T A

(OF PrOCESSOKS) ‘-----i foeoeoi fooeolb ool ool bl ol bl

Assignment of subproblems to processors is determined before (or right

at the start) of execution. Assignment does not dependent on execution
behavior.

Good: very low (almost none) run-time overhead

Bad: execution time of subproblems must be predictable (so programmer
can statically balance load)

Examples: solver kernel, OCEAN, mandlebrot in asst 1, problem 1, ISPC foreach

Assignment of subproblems to processors is determined as the program runs.

Good: can achieve balance load under unpredictable conditions
Bad: incurs runtime overhead to determine assignment

Examples: ISPC tasks, executing grid of CUDA thread blocks on GPU,
assignment 3, shared work queue
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Balancing the workload

Ideally all processors are computing all the time during program execution
(they are computing simultaneously, and they finish their portion of the work at the same time)

P1 P2 P3 P4
I I I | Load imbalance can significantly reduce overall speedup
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Dynamic assignment using work queues

Sub-problems [ ] [ ] [ ] [ ] [ ] [ ]
ota sty ot . OCIC I )

l

Shared work queue: a list of work to do
(for now, let’s assume each piece of work is independent)

Worker threads: T1 2 T3 T4
Pull data from work 1111 L~
Push new work to queue as it’s created
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Decomposition in assignhment 2

m Most solutions decomposed the problem in several ways
- Decomposed screen into tiles (“task” per tile)
- Decomposed tile into per circle “tasks”
- Decomposed tile into per pixel “tasks”
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Artifactual vs. inherent communication

Cacheline

INHERENT

COMMUNICATION ceeeee :/ ce oo

® o o 00 ® & o
ARTIFACTUAL DL DDA PP 7
COMMUNICATION AR DR
FALSE SHARING

Problem assignment as shown. Each processor
reads/writes only from its local data.
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Programming model abstractions

Structure?

Communication?

Sync?

1. shared

Multiple processors
sharing an address

Implicit: loads and stores to

shared variables

Synchronization primitives
such as locks and barriers

address space  space.
2 . M essage Multiple processors, Explicit: send and receive Build synchronization out
. eachwithownmemory  messages of messages.
paSS| n g address space.
3. data- pa fa I I EI Rigid program Typically not allowed Implicit barrier at the

structure: single logical
thread containing
map(f, collection)
where “iterations” of
the map can be
executed concurrently

within map except

through special built-in

primitives (like
“reduce”). Comm
implicit through loads
and stores to address
space

beginning and end of
the map.
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Cache coherence

Why cache coherence?

Hand-wavy answer: would like shared memory to behave “intuitively” when two
processors read and write to a shared variable. Reading a value after another processor
writes to it should return the new value. (despite replication due to caches)

Requirements of a coherent address space

1. Aread by processor P to address X that follows a write by P to address X, should return the value of the
write by P (assuming no other processor wrote to X in between)

2. Aread by a processor to address X that follows a write by another processor to X returns the written value...
if the read and write are sufficiently separated in time (assuming no other write to X occurs in between)

3. Writes to the same location are serialized; two writes to the same location by any two processors are seen
in the same order by all processors.

(Example: if values 1 and then 2 are written to address X, no processor observes 2 before 1)

Condition 1: program order (as expected of a uniprocessor system)

Condition 2: write propagation: The news of the write has to eventually get to the other processors. Note that
precisely when it is propagated is not defined by definition of coherence.

Condition 3: write serialization
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Implementing cache coherence

Main idea of invalidation-based protocols: before
writing to a cache line, obtain exclusive access to it

SNOOPING

DIRECTORIES

Each cache broadcasts its cache misses to all other caches. Waits for other
caches to react before continuing.

Good: simple, low latency
Bad: broadcast traffic limits scalability

Information about location of cache line and number of shares is stored in a
centralized location. On a miss, requesting cache queries the directory to
find sharers and communicates with these nodes using point-to-point
messages.

Good: coherence traffic scales with number of sharers, and number of

sharers is usually low
Bad: higher complexity, overhead of directory storage, additional latency
due to longer critical path
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PriWr / BusRdX

PrRd /-
PrWr/ -

>

PrWr / BusRdX

PrRd / BusRd

()

(Modified)

A

C

Y D R

PrRd/ --
BusRd / --

°

>
<

BusRd / flush

BusRdX / --

MSI state transition diagram

A/ B: if action A is observed by cache controller, action B is taken

----- » Broadcast (bus) initiated transaction

—> Processor initiated transaction

BusRdX / flush
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