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Today’s focus: the basics of scaling a web site

▪ I’m going to focus on performance issues 
- Parallelism and locality 

▪ Many other issues in developing a successful web platform 
- Reliability, security, privacy, etc. 
- There are other great courses at CMU for these topics 

(distributed systems, databases, cloud computing)
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A simple web server for static content

while	(1)		
{	

				request	=	wait_for_request();	

				filename	=	parse_request(request);	

				contents	=	read_file(filename);	

				send	contents	as	response	

}

Question: is site performance a question of throughput or latency? 
(we’ll revisit this question later)
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A simple parallel web server

Worker 
Process 1

Parent Process

Worker 
Process 2

Worker 
Process N...

while	(1)		
{	
				request	=	wait_for_request();	

				filename	=	parse_request(request);	

				contents	=	read_file(filename);	

				send	contents	as	response	
}What factors would you consider in setting 

the value of N for a multi-core web server?

▪ Parallelism: use all the server’s cores 

▪ Latency hiding: hide long-latency disk read operations (by context switching between worker processes) 

▪ Concurrency: many outstanding requests; service quick requests while long requests are in progress 
▪ (e.g., large file transfer shouldn’t block serving index.html) 

▪ Footprint: don’t want too many threads so that aggregate working set of all threads causes thrashing
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Example: Apache’s parent process dynamically 
manages size of worker pool

Worker 
Process 1

Parent Process

Worker 
Process 2

Worker 
Process 3

Worker 
Process 4

Worker 
Process 5

Busy servicing 
long request

Busy servicing 
long request

New request

Desirable to maintain a few idle workers in 
pool (avoid process creation in critical path 

of servicing requests)
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Limit maximum number of workers to avoid 
excessive memory footprint (thrashing)

Worker 
Process 1

Parent Process

Worker 
Process 2

Worker 
Process 3

Key parameter of Apache’s “prefork” multi-processing module:  MaxRequestWorkers

Worker 
Process 4

Worker 
Process 5

Busy servicing 
long request

Busy servicing 
long request

New requestBusy servicing 
request

Busy servicing 
request

Busy servicing 
request

Request queue
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Aside: why partition server into processes, not threads?

▪ Protection 
- Don’t want a crash in one worker to bring down the whole web server 

- Often want to use non-thread safe libraries (e.g., third-party libraries) in 
server operation 

▪ Parent process can periodically recycle workers 
(robustness to memory leaks) 

▪ Of course, multi-threaded web server solutions exist as well 
(e.g., Apache’s “worker” module)
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Dynamic web content

Database 
(e.g., mySQL)

PHP/Ruby/Python/Node.js 
interpreter

Worker Process

Web Server

Worker Process

PHP/Ruby/Python/Node.js 
interpreter

. . .

Requests

“Response” is not a static page on disk, but the result of 
application logic running in response to a request.
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Consider the amount of logic and 
the number database queries 
required to generate your 
Facebook News Feed. 
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Scripting language performance (poor)

▪ Two popular content management systems (PHP) 
- Wordpress ~ 12 requests/sec/core (DB size = 1000 posts) 
- MediaWiki  ~ 8 requests/sec/core 

▪ Recent interest in making making scripted code execute faster 
- Facebook’s HipHop: PHP to C source-to-source converter 
- Google’s V8 Javascript engine:  JIT Javascript to machine code 

[Source: Talaria Inc., 2012]
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“Scale out” to increase throughput

Database 
(e.g., mySQL)

Worker Process

Web Server

Worker Process

. . .

Requests

Worker Process

Web Server

Worker Process

. . .

Worker Process

Web Server

Worker Process

. . .

. . .

Load Balancer

Use many web servers to meet site’s throughput goals. 

Load balancer maintains list of available 
web servers and an estimate of load on 
each. 

Distributes requests to pool of web servers. 
(Redistribution logic is cheap: one load 
balancer typically can service many web 
servers)



 CMU 15-418/618, Fall 2019

Load balancing with persistence

Database 
(e.g., mySQL)

Worker Process

Web Server

Worker Process

. . .

Requests

Worker Process

Web Server

Worker Process

. . .

Worker Process

Web Server

Worker Process

. . .

. . .

Load Balancer

All requests associated with a session are directed to the same server (aka. session affinity, “sticky sessions”)

map(sessionId, serverName)

1. SessionId = X

2. SessionId = Y

3. SessionId = X

4. SessionId = X

Session 
State

Session 
State

Session 
State

1
3

4

2

Good: 
- Do not have to change web-application 

design to implement scale out 
Bad: 
- Stateful servers can limit load balancing 

options.  Also, session is lost if server fails
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Desirable: avoid persistent state in web server

Database 
(e.g., mySQL)

Requests

Load Balancer

Maintain stateless servers, treat sessions as persistent data to be stored in the DB.

1. SessionId = X

2. SessionId = Y

3. SessionId = X

4. SessionId = X

Session State

Worker Process

Web Server

Worker Process

. . .

Worker Process

Web Server

Worker Process

. . .

Worker Process

Web Server

Worker Process

. . .

. . .
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Dealing with database contention

Database 
(e.g., mySQL)

Requests

Load Balancer

Option 1: “scale up”: buy better hardware for database server, buy professional-grade DB that scales 
(see database systems course by Prof. Pavlo)  
Good: no change to software 
Bad: High cost, limit to scaling 

Worker Process

Web Server

Worker Process

. . .

Worker Process

Web Server

Worker Process

. . .

Worker Process

Web Server

Worker Process

. . .

. . .
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Scaling out a database: replicate

Database 
Services (writes)

Requests

Load Balancer

Replicate data and parallelize reads 
(most DB accesses are reads) 
Cost: extra storage, consistency issues

Worker Process

Web Server

Worker Process

. . .

Worker Process

Web Server

Worker Process

. . .

Worker Process

Web Server

Worker Process

. . .

. . .

Database Replica 
Read only

Database Replica 
Read only

Adopt relaxed consistency models:  
propagate updates “eventually”
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Scaling out a database: partition

Users photos 
(reads and writes)

Requests

Load Balancer

Worker Process

Web Server

Worker Process

. . .

Worker Process

Web Server

Worker Process

. . .

Worker Process

Web Server

Worker Process

. . .

. . .

Users A-M profile 
(reads and writes)

Users N-Z profile 
(reads and writes)

Clickstream data 
(writes)

Can tune database for access 
characteristics of data stored 
(common to use different database 
implementations for different 
workloads)
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Intra-request parallelism

Page 
Request

Load Balancer

Amount of user traffic is directly correlated to response latency. 

See great post: 
http://perspectives.mvdirona.com/2009/10/31/TheCostOfLatency.aspx

Worker Process
Web Server

Worker Process

. . .

Worker Process

Web Server

Worker Process

. . .

Worker Process

Web Server

Worker Process

. . .

. . .

Recommender Service

Notification/ 
Feed Aggregator

Advertising Service

Parallelize generation of a single page
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How many web servers do you need?
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Web traffic is bursty
Amazon.com Page Views HuffingtonPost.com Page Views Per Week

HuffingtonPost.com Page Views Per Day

(fewer people read news on weekends)

Holiday shopping season

More examples: 
- Facebook gears up for bursts of image 

uploads on Halloween and New Year’s Eve 
- Twitter topics trend after world events
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15-418/618 site traffic
Exam 1

Spring 2014

Spring 2015

Spring 2016

Spring 2016

34,436

24,132

Interesting 2016 fact: 10% fewer page views per 
student (vs 2015) on the day before the exam.
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Problem
▪ Site load is bursty 

▪ Provisioning site for the average case load will result in poor 
quality of service (or failures) during peak usage 
- Peak usage tends to be when users care the most... since by the definition the 

site is important at these times 

▪ Provisioning site for the peak usage case will result in many 
idle servers most of the time 
- Not cost efficient (must pay for many servers, power/cooling, datacenter 

space, etc.)
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Elasticity!
▪ Main idea: site automatically adds or removes web 

servers from worker pool based on measured load 

▪ Need source of servers available on-demand 
- Amazon.com EC2 instances 
- Google Cloud Platform 
- Microsoft Azure
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Example: Amazon’s elastic compute cloud (EC2)
▪ Amazon had an over-provisioning problem

Amazon.com Page Views

▪ Solution: make machines available for rent to 
others in need of compute
- For those that don’t want to incur cost of, or have 

expertise to, manage own machines at scale 
- For those that need elastic compute capability 
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Site configuration: normal load

Database 
(potentially multiple 

machines)

Requests

Load Balancer

Web Server

. . .

Perf. Monitor

Web Server

Web Server
DB Slave 1

DB Slave 2
Master

Load: moderate
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Event triggers spike in load

Database 
(potentially multiple 

machines)

Requests

Load Balancer

Web Server

. . .

Web Server

Web Server
DB Slave 1

DB Slave 2
Master

@justinbieber: OMG, parallel 
prog. class @ CMU is 
awesome. Look 4 my final 
project on hair sim. #15418

Heavily loaded servers: slow response times

Perf. Monitor
Load: high
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Heavily loaded servers = slow response times
▪ If requests arrive faster than site can service them, queue lengths will grow 
▪ Latency of servicing request is wait time in queue + time to actually process 

request 
- Assume site has capability to process R requests per second 
- Assume queue length is L 
- Time in queue = L/R

Worker 
Process 1

Worker 
Process 2

Worker 
Process 3

Worker 
Process 4

Worker 
Process 5

Busy servicing 
long request

Busy servicing 
long request

New requestBusy servicing 
request

Busy servicing 
request

Busy servicing 
request

Request queue

▪ How does site throughput change under heavy load?
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Site configuration: high load

Database 
(potentially multiple 

machines)

Requests

Load Balancer

Web Server

. . .

Web Server

Web Server
DB Slave 1

DB Slave 2
Master

Web Server

Web Server

Web Server

Site performance monitor detects high load 
Instantiates new web server instances 
Informs load balancer about presence of new servers

Perf. Monitor
Load: moderate
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Site configuration: return to normal load

Database 
(potentially multiple 

machines)

Requests

Load Balancer

Web Server

. . .

Web Server

Web Server
DB Slave 1

DB Slave 2
Master

Web Server

Web Server

Web Server

Site performance monitor detects low load  
Released extra server instances (to save operating cost) 
Informs load balancer about loss of servers

Perf. Monitor
Load: too low

@justinbieber: WTF, 
parallel programming is 2 
hrd. Buy my new album.

Note convenience of stateless servers in 
elastic environment: can kill server 
without loss of important information.
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Today: many “turn-key” environment-in-a-box services 
Offer elastic computing environments for web applications

CloudWatch+Auto Scaling 
Amazon Elastic Beanstalk
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The story so far: parallelism 
scale out, scale out, scale out 

(+ elasticity to be able to scale out on demand)

Now: reuse and locality
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Recall: basic site configuration

DatabasePHP/Ruby/Python/Node.js 
interpreter

Worker Process

Web Server

Requests

$query	=	"SELECT	*	FROM	users	WHERE	username=‘kayvonf’;	
$user	=	mysql_fetch_array(mysql_query($userquery));	
							
echo	“<div>”	.	$user[‘FirstName’]	.	“	“	.	$user[‘LastName’]	.	“</div>”;

Responses

PHP ‘user’ objectHTML ‘users’ table

Response Information Flow

<div>Kayvon Fatahalian</div>

Example PHP Code
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Work repeated every page

$query	=	"SELECT	*	FROM	users	WHERE	username=‘kayvonf’;	
$user	=	mysql_fetch_array(mysql_query($userquery));	
							
echo	“<div>”	.	$user[‘FirstName’]	.	“	“	.	$user[‘LastName’]	.	“</div>”;

PHP ‘user’ objectHTML ‘users’ table

Response Information Flow

<div>Kayvon Fatahalian</div>

Example PHP Code

▪ Steps repeated to emit my name at the top of every page: 

- Communicate with DB 
- Perform query 
- Marshall results from database into object model of scripting language 
- Generate presentation 
- etc...

Remember, DB can be hard to scale!
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Solution: cache!

Database 
(potentially multiple 

machines)

Requests

Load Balancer . . .

Perf. Monitor Web Server

DB Slave 1

DB Slave 2
Master

Web Server

Web Server

Web Server

Memcached

▪ Cache commonly accessed objects 
- Example: memcached, in memory key-value store (e.g., a big hash table) 
- Reduces database load (fewer queries) 
- Reduces web server load: 

- Less data shuffling between DB response and scripting environment 
- Store intermediate results of common processing
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Caching example
userid	=	$_SESSION[‘userid’];	

check	if	memcache->get(userid)	retrieves	a	valid	user	object	

if	not:	
			make	expensive	database	query	
			add	resulting	object	into	cache	with	memcache->put(userid)	
			(so	future	requests	involving	this	user	can	skip	the	query)	

continue	with	request	processing	logic

▪ Of course, there is complexity associated with keeping caches in sync with data in 
the DB in the presence of writes 

- Must invalidate cache 

- Very simple “first-step” solution: only cache read-only objects 

- More realistic solutions provide some measure of consistency 

- But we’ll leave this to your distributed computing and database courses
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Site configuration

Database 
(potentially multiple 

machines)

Requests

Load Balancer . . .

Perf. Monitor Web Server

DB Slave 1

DB Slave 2
Master

Web Server

Web Server

Web Server

memcached servers 
value = get(key) 
put(key, value)
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Example: Facebook memcached deployment

▪ Facebook, circa 2008 
- 800 memcached servers 
- 28 TB of cached data 

▪ Performance 
- 200,000 UDP requests per second @ 173 msec latency  
- 300,000 UDP requests per second possible at 

“unacceptable” latency

Source: https://www.facebook.com/note.php?note_id=39391378919

https://www.facebook.com/note.php?note_id=39391378919
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More caching
▪ Cache web server responses (e.g. entire pages, pieces of pages) 

- Reduce load on web servers 
- Example: Varnish-Cache application “accelerator”

Database 
(potentially multiple 

machines)
Requests

Load Balancer . . .

Perf. Monitor
Web Server

DB Slave 1

DB Slave 2
Master

Web Server

Web Server

Web Server

Memcached servers

Front-End Cache

Front-End Cache

Front-End Cache

Front-End Cache
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Caching using content distribution networks (CDNs)
▪ Serving large media assets can be expensive to serve (high bandwidth costs, tie up 

web servers) 
- E.g., images, streaming video 

▪ Physical locality is important 
- Higher bandwidth 
- Lower latency

London Content Distribution Network
Source: http://www.telco2.net/blog/2008/11/amazon_cloudfront_yet_more_tra.html

http://www.telco2.net/blog/2008/11/amazon_cloudfront_yet_more_tra.html


 CMU 15-418/618, Fall 2019

CDN usage example (Facebook photos)

Image source URL: (you can definitely see this photo… try it!) 
https://scontent-iad3-1.xx.fbcdn.net/hphotos-xfl1/t31.0-8/12628370_10153516598728897_3170992092621097770_o.jpg

Facebook page URL: (you can’t get here since you aren’t a friend on my photos access list) 
https://www.facebook.com/photo.php?fbid=10153516598728897&set=a.279790798896.141301.722973896&type=3&theater

https://scontent-iad3-1.xx.fbcdn.net/hphotos-xfl1/t31.0-8/12628370_10153516598728897_3170992092621097770_o.jpg
https://www.facebook.com/photo.php?fbid=10153516598728897&set=a.279790798896.141301.722973896&type=3&theater
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CDN integration

Media Requests

Database

Load Balancer . . .

Perf. Monitor
Web Server

DB Slave 
1

Master

Memcached servers

Front-End Cache

Front-End Cache

Front-End Cache

Front-End Cache

Web Server

Web Server

Web Server

DB Slave 
2

Local CDN 
(Pittsburgh) 

Local CDN 
(San Francisco) 

Page Requests

Page Requests

Media Requests
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Summary: scaling modern web sites
▪ Use parallelism 

- Scale-out parallelism: leverage many web servers to meet throughput demand 
- Elastic scale-out: cost-effectively adapt to bursty load 
- Scaling databases can be tricky (replicate, shard, partition by access pattern) 

- Consistency issues on writes 

▪ Exploit locality and reuse 
- Cache everything (key-value stores) 

- Cache the results of database access (reduce DB load) 
- Cache computation results (reduce web server load) 
- Cache the results of processing requests (reduce web server load) 

- Localize cached data near users, especially for large media content (CDNs) 

▪ Specialize implementations for performance 
- Different forms of requests, different workload patterns 
- Good example: different databases for different types of requests
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Final comments
▪ It is true that performance of straight-line application logic is often very poor in web-

programming languages (orders of magnitude left on the table in Ruby and PHP).   

▪ BUT... web development is not just quick hacking in slow scripting languages. Scaling a web 
site is a very challenging parallel-systems problem that involves many of the optimization 
techniques and design choices studied in this class: just at different scales 

- Identifying parallelism and dependencies 
- Workload balancing: static vs. dynamic partitioning issues 
- Data duplication vs. contention 
- Throughput vs. latency trade-offs 
- Parallelism vs. footprint trade-offs 
- Identifying and exploiting reuse and locality 

▪ Many great sites (and blogs) on the web to learn more: 
- www.highscalability.com has great case studies (see “All Time Favorites” section) 
- James Hamilton’s blog: http://perspectives.mvdirona.com

http://www.highscalability.com
http://perspectives.mvdirona.com
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Course so far review 
(a more-or-less randomly selected collection of 

topics from previous lectures) 
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Exam details
▪ Closed book, closed laptop 

▪ One “post it” note (but we’ll let you use both sides) 

▪ Covers all lecture material through memory consistency 
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Throughput vs. latency

THROUGHPUT

LATENCY

The rate at which work gets done. 
- Operations per second 
- Bytes per second (bandwidth) 
- Tasks per hour

The amount of time for an operation to complete 
- An instruction takes 4 clocks 
- A cache miss takes 200 clocks to complete 
- It takes 20 seconds for a program to complete 
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Ubiquitous parallelism
▪ What motivated the shift toward multi-core parallelism in 

modern processor design? 
- Inability to scale clock frequency due to power limits  
- Diminishing returns when trying to further exploit ILP

Is the new performance focus 
on throughput, or latency?
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Techniques for exploiting independent operations in 
applications

1. superscalar 
execution

What is it? What is the benefit?
Processor executes multiple instructions per clock.  Super-scalar execution 
exploits instruction level parallelism (ILP). When instructions in the same 
thread of control are independent they can be executed in parallel on a 
super-scalar processor. 

2. SIMD 
execution

3. multi-core 
execution

4. multi-threaded 
execution

Processor executes the same instruction on multiple pieces of data at 
once (e.g., one operation on vector registers).  The cost of fetching and 
decoding the instruction is amortized over many arithmetic operations.  

A chip contains multiple (mainly) independent processing cores, each 
capable of executing independent instruction streams.

Processor maintains execution contexts (state: e.g, a PC, registers, virtual 
memory mappings) for multiple threads. Execution of thread instructions 
is interleaved on the core over time.  Multi-threading reduces processor 
stalls by automatically switching to execute other threads when one 
thread is blocked waiting for a long-latency operation to complete. 
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1. superscalar 
execution

Who is responsible for mapping?
Usually not a programmer responsibility: 
ILP automatically detected by processor hardware or by compiler (or both) 
(But manual loop unrolling by a programmer can help)

2. SIMD 
execution

3. multi-core 
execution

4. multi-threaded 
execution

In simple cases, data parallelism is automatically detected by the compiler, (e.g., 
assignment 1 saxpy). In practice, programmer explicitly describes SIMD execution 
using vector instructions or by specifying independent execution in a high-level 
language (e.g., ISPC gangs, CUDA)

Programmer defines independent threads of control. 
e.g., pthreads, ISPC tasks, openMP #pragma 

Programmer defines independent threads of control. But programmer 
must create more threads than processing cores.

Techniques for exploiting independent operations in 
applications
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Frequently discussed processor examples
▪ Intel Core i7 CPU 

- 4 cores 
- Each core: 

- Supports 2 threads (“Hyper-Threading”) 
- Can issue 8-wide SIMD instructions (AVX instructions) or 4-wide SIMD instructions (SSE) 
- Can execute multiple instructions per clock (superscalar) 

▪ NVIDIA GTX 980 GPU 
- 16 “cores” (called SMM core by NVIDIA) 
- Each core: 

- Supports up to 64 warps (warp is a group of 32 “CUDA threads”) 
- Issues 32-wide SIMD instructions (same instruction for all 32 “CUDA threads” in a warp) 
- Also capable of issuing multiple instructions per clock 

▪ Intel Xeon Phi 
- 61 cores 
- Each core: supports 4 threads, issues 16-wide SIMD instructions 
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Multi-threaded, SIMD execution on GPU
= SIMD functional unit, 
     control shared across 32 units 
     (1 MUL-ADD per clock)

▪ Describe how CUDA threads are mapped to the execution resources on this GTX 980 GPU? 
- e.g., describe how the processor executes instructions each clock
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Decomposition: assignment 1, program 3
▪ You used ISPC to parallelize the Mandelbrot generation 

▪ You created a bunch of tasks. How many? Why?

uniform	int	rowsPerTask	=	height	/	2;	

//	create	a	bunch	of	tasks	

launch[2]	mandelbrot_ispc_task(	
															x0,	y0,	x1,	y1,	
															width,	height,	
															rowsPerTask,	
															maxIterations,	
															output);
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Amdahl’s law
▪ Let S = the fraction of sequential execution that is inherently sequential 

▪ Max speedup on P processors given by:  

speedup 

Processors

M
ax

 Sp
ee

du
p

S=0.01

S=0.05

S=0.1
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Thought experiment
▪ Your boss gives your team a piece of code for which 25% of the operations 

are inherently serial and instructs you to parallelize the application on a six-
core machines in GHC 3000.  He expects you to achieve 5x speedup on this 
application. 

▪ Your friend shouts at your boss, “that is %#*$(%*!@ impossible”! 

▪ Your boss shouts back, “I want employees with a can-do attitude! You 
haven’t thought hard enough.” 

▪ Who is right?
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Work assignment Problem to solve

Subproblems 
(“tasks”)

Threads 
(or processors)

Decomposition

Assignment

STATIC 
ASSIGNMENT

DYNAMIC 
ASSIGNMENT

Assignment of subproblems to processors is determined before (or right 
at the start) of execution.  Assignment does not dependent on execution 
behavior. 

Assignment of subproblems to processors is determined as the program runs.

Good: very low (almost none) run-time overhead 
Bad: execution time of subproblems must be predictable (so programmer 
can statically balance load)

Good: can achieve balance load under unpredictable conditions 
Bad: incurs runtime overhead to determine assignment

Examples: solver kernel, OCEAN, mandlebrot in asst 1, problem 1, ISPC foreach

Examples: ISPC tasks, executing grid of CUDA thread blocks on GPU, 
assignment 3, shared work queue
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Balancing the workload
Ideally all processors are computing all the time during program execution 
(they are computing simultaneously, and they finish their portion of the work at the same time)

Load imbalance can significantly reduce overall speedup
Time P1 P2 P3 P4
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Dynamic assignment using work queues

Worker threads: 
Pull data from work queue 
Push new work to queue as it’s created

T1 T2 T3 T4

Sub-problems 
(aka “tasks”, “work”)

Shared work queue: a list of work to do 
(for now, let’s assume each piece of work is independent)
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Decomposition in assignment 2
▪ Most solutions decomposed the problem in several ways 

- Decomposed screen into tiles (“task” per tile) 
- Decomposed tile into per circle “tasks” 
- Decomposed tile into per pixel “tasks”
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Artifactual vs. inherent communication

ARTIFACTUAL 
COMMUNICATION

INHERENT 
COMMUNICATION

FALSE SHARING

P1 P2

Cache line

Problem assignment as shown. Each processor 
reads/writes only from its local data.
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Programming model abstractions

1. shared 
address space

Communication?

Implicit: loads and stores to 
shared variables

2. message 
passing

3. data-parallel

Sync?

Synchronization primitives 
such as locks and barriers

Structure?

Multiple processors 
sharing an address 
space.

Multiple processors, 
each with own memory 
address space.

Explicit: send and receive 
messages

Build synchronization out 
of messages.

Rigid program 
structure: single logical 
thread containing 
map(f,	collection) 
where “iterations” of 
the map  can be 
executed concurrently

Typically not allowed 
within map except 
through special built-in 
primitives (like 
“reduce”). Comm 
implicit through loads 
and stores to address 
space

Implicit barrier at the 
beginning and end of 
the map.
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Cache coherence

Why cache coherence?
Hand-wavy answer: would like shared memory to behave “intuitively” when two 
processors read and write to a shared variable.  Reading a value after another processor 
writes to it should return the new value.  (despite replication due to caches)

Requirements of a coherent address space 
1. A read by processor P to address X that follows a write by P to address X, should return the value of the 

write by P (assuming no other processor wrote to X in between)  

2. A read by a processor to address X that follows a write by another processor to X returns the written value... 
if the read and write are sufficiently separated in time (assuming no other write to X occurs in between) 

3. Writes to the same location are serialized; two writes to the same location by any two processors are seen 
in the same order by all processors. 
(Example: if values 1 and then 2 are written to address X, no processor observes 2 before 1)

Condition 1: program order (as expected of a uniprocessor system) 

Condition 2: write propagation: The news of the write has to eventually get to the other processors. Note that  
                            precisely when it is propagated is not defined by definition of coherence.   

Condition 3: write serialization
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Implementing cache coherence

Main idea of invalidation-based protocols: before 
writing to a cache line, obtain exclusive access to it

SNOOPING Each cache broadcasts its cache misses to all other caches.  Waits for other 
caches to react before continuing.

DIRECTORIES Information about location of cache line and number of shares is stored in a 
centralized location.  On a miss, requesting cache queries the directory to 
find sharers and communicates with these nodes using point-to-point 
messages.

Good: simple, low latency 
Bad: broadcast traffic limits scalability

Good: coherence traffic scales with number of sharers, and number of 
sharers is usually low 
Bad: higher complexity, overhead of directory storage, additional latency 
due to longer critical path
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MSI state transition diagram

S 
(Shared)

M 
(Modified)

PrRd / -- 
PrWr / --

PrRd / BusRd

BusRd / flush

Broadcast (bus) initiated transaction

Processor initiated transaction

A / B: if action A is observed by cache controller,  action B is taken

I 
(Invalid)

PrWr / BusRdX

PrWr / BusRdX

PrRd / -- BusRdX / --

BusRdX / flush

BusRd / --


