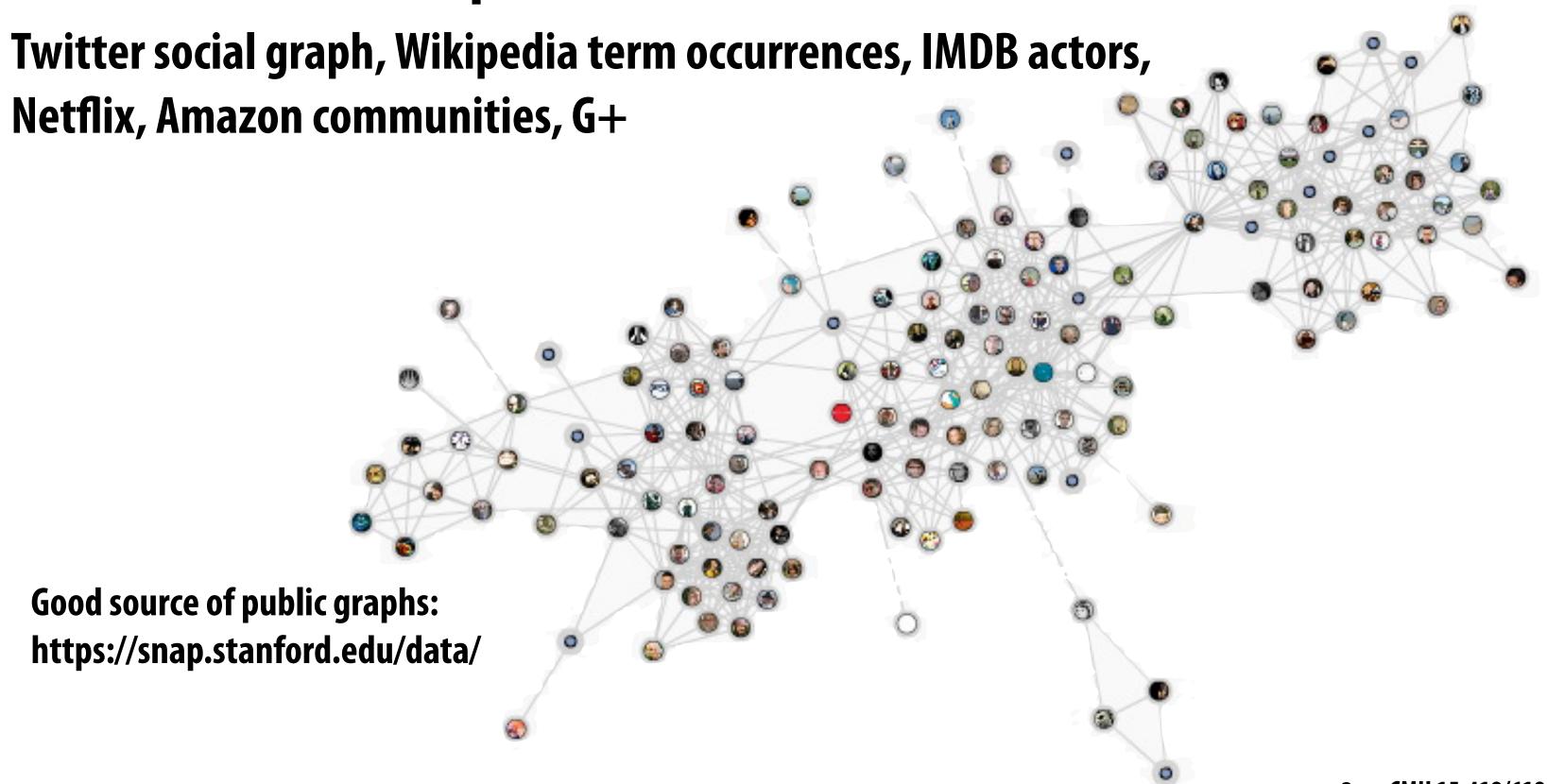
Lecture 23: Domain-specific programming on graphs

Parallel Computer Architecture and Programming CMU 15-418/15-618, Fall 2019

Today's topic: analyzing big graphs

- Many modern applications:
 - Web search results, recommender systems, influence determination, advertising, anomaly detection, etc.
- **Public dataset examples:** Netflix, Amazon communities, G+



Thought experiment: if we wanted to design a programming system for computing on graphs, where might we begin?

What abstractions do we need?

Whenever I'm trying to assess the importance of a new programming system, I ask two questions:

"What tasks/problems does the system take off the hands of the programmer?

- (are these problems challenging or tedious enough that I feel the system is adding sufficient value for me to want to use it?)"
- "What problems does the system leave as the responsibility for the programmer?"
 - (likely because the programmer is better at these tasks)

Liszt (recall last class):

Programmer's responsibility:

- Describe mesh connectivity and fields defined on mesh
- **Describe operations on mesh structure and fields**

Liszt system's responsibility:

- Parallelize operations without violating dependencies or creating data races (uses different algorithms to parallelize application on different platforms)
- Choose graph data structure / layout, partition graph across parallel machine, manage low-level communication (MPI send), allocate ghost cells, etc.

Halide (recall last class):

Programmer's responsibility:

- Describing image processing algorithm as pipeline of operations on images
- Describing the schedule for executing the pipeline (e.g., "block this loop, "parallelize this loop", "fuse these stages")

Halide system's responsibility:

-

A good exercise: carry out this evaluation for another programming system: like OpenGL, SQL, MapReduce, etc.

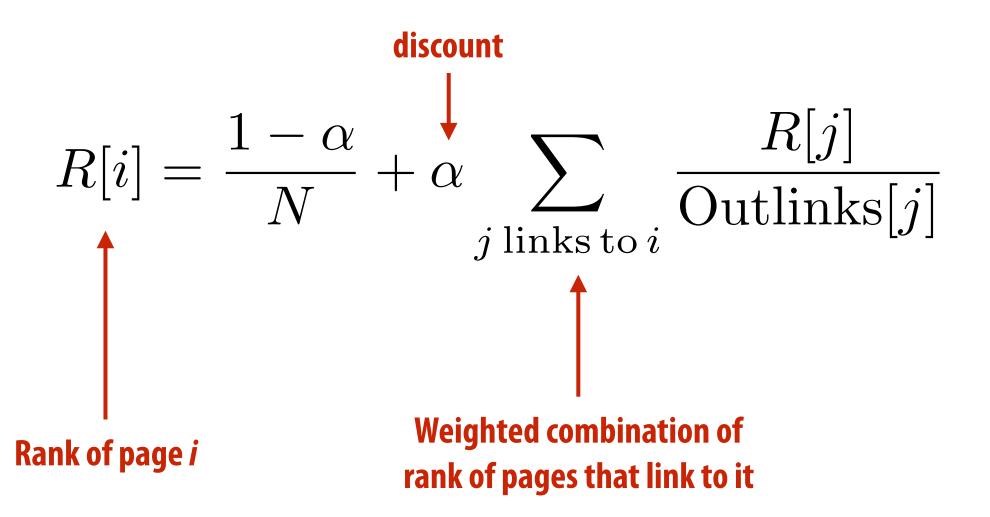
Implementing the schedule using mechanisms available on the target machine (spawning pthreads, allocating temp buffers, emitting vector instructions, loop indexing code)

Programming system design questions:

- What are the fundamental operations we want to be easy to express and efficient to execute?
- What are the key optimizations performed by the best implementations of these operations?
 - high-level abstractions should not prevent these
 - maybe even allow system to perform them for the application

Example graph computation: Page Rank

Page Rank: iterative graph algorithm Graph nodes = web pages Graph edges = links between pages



GraphLab

- A system for describing <u>iterative</u> computations on graphs
- Implemented as a C++ runtime
- Runs on shared memory machines or distributed across clusters
 - GraphLab runtime takes responsibility for scheduling work in parallel, partitioning graphs across clusters of machines, communication between master, etc.

GraphLab programs: state

- The graph: G = (V, E)
 - Application defines data blocks on each vertex and directed edge
 - $D_v =$ data associated with vertex v
 - $D_{u \rightarrow v}$ = data associated with directed edge $u \rightarrow v$

Read-only global data

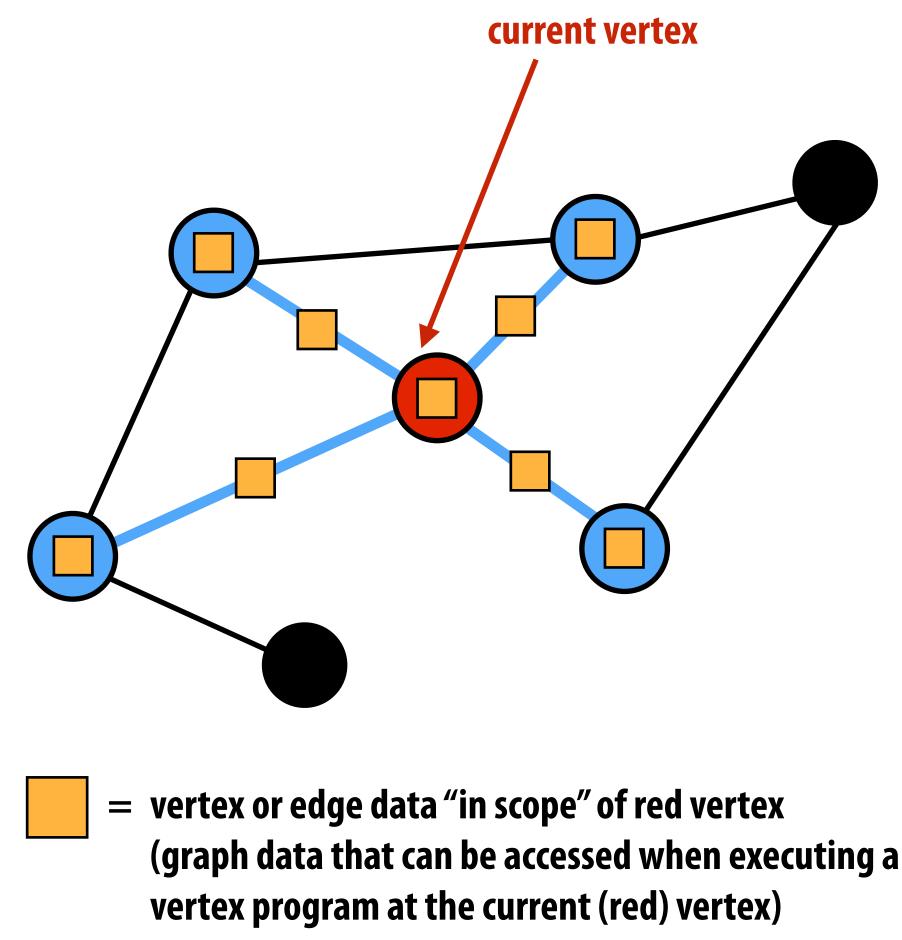
Can think of this as per-graph data, rather than per vertex or per-edge data)

Notice: I always first describe program state

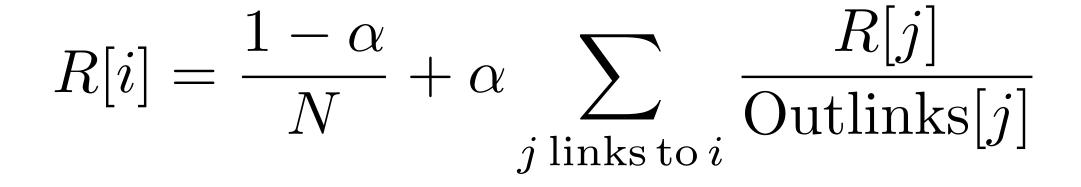
And then describe what operations are available to manipulate this state

GraphLab operations: the vertex program

- **Defines per-vertex operations on the vertex's local neighborhood**
- **Neighborhood** (aka "scope") of vertex:
 - The current vertex
 - Adjacent edges
 - **Adjacent vertices**



Simple example: PageRank *



```
PageRank_vertex_program(vertex i) {
```

```
// (Gather phase) compute the sum of my neighbors rank
 double sum = 0;
 foreach(vertex j : in_neighbors(i)) {
   sum = sum + j.rank / num_out_neighbors(j);
  }
 // (Apply phase) Update my rank (i)
 i.rank = (1-0.85)/num_graph_vertices() + 0.85*sum;
}
```

Programming in GraphLab amounts to defining how to update graph state at each vertex. The system takes responsibility for scheduling and parallelization.

* This is made up syntax for slide simplicity: actual syntax is C++, as we'll see on the next slide

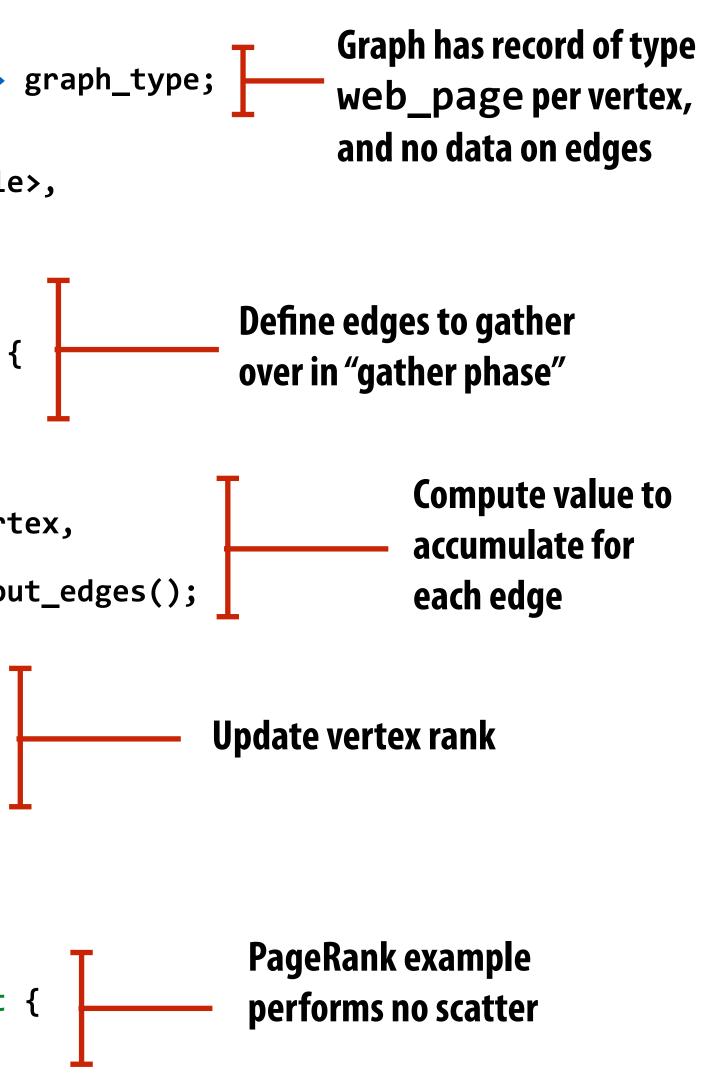
Let alpha = 0.85

GraphLab: data access

- The application's vertex program executes per-vertex
- The vertex program defines:
 - What adjacent edges are inputs to the computation
 - What computation to perform per edge
 - How to update the vertex's value
 - What adjacent edges are modified by the computation
 - How to update these output edge values
- Note how GraphLab requires the program to tell it all data that will be accessed, and whether it is read or write access

PageRank: GraphLab vertex program (C++ code)

```
struct web_page {
  std::string pagename;
  double pagerank;
 web_page(): pagerank(0.0) { }
typedef graphlab::distributed_graph<web_page, graphlab::empty> graph_type;
class pagerank_program:
            public graphlab::ivertex_program<graph_type, double>,
            public graphlab::IS_POD_TYPE {
public:
 // we are going to gather on all the in-edges
  edge_dir_type gather_edges(icontext_type& context,
                             const vertex_type& vertex) const {
    return graphlab::IN_EDGES;
  }
 // for each in-edge gather the weighted sum of the edge.
  double gather(icontext_type& context, const vertex_type& vertex,
               edge_type& edge) const {
   return edge.source().data().pagerank / edge.source().num_out_edges();
  }
  // Use the total rank of adjacent pages to update this page
 void apply(icontext_type& context, vertex_type& vertex,
             const gather_type& total) {
   double newval = total * 0.85 + 0.15;
   vertex.data().pagerank = newval;
  // No scatter needed. Return NO EDGES
  edge_dir_type scatter_edges(icontext_type& context,
                              const vertex_type& vertex) const {
   return graphlab::NO_EDGES;
};
```



Running the program

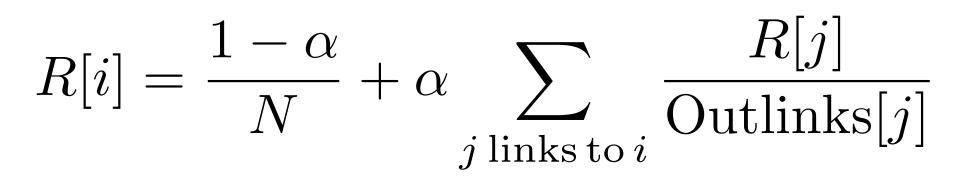
graphlab::omni_engine<pagerank_program> engine(dc, graph, "sync"); engine.signal_all(); engine.start();

GraphLab runtime provides "engines" that manage scheduling of vertex programs engine.signal all() marks all vertices for execution

You can think of the GraphLab runtime as a work queue scheduler. And invoking a vertex program on a vertex as a task that is placed in the work queue.

So it's reasonable to read the code above as: "place all vertices into the work queue" Or as: "foreach vertex" run the vertex program.

Vertex signaling: GraphLab's mechanism for generating new work



Iterate update of all R[i]'s 10 times Uses generic "signal" primitive (could also wrap code on previous slide in a for loop)

```
struct web_page {
  std::string pagename;
  double pagerank;
 int counter; <
 web_page(): pagerank(0.0),counter(0) { }
}
 // Use the total rank of adjacent pages to update this page
 void apply(icontext_type& context, vertex_type& vertex,
             const gather_type& total) {
   double newval = total * 0.85 + 0.15;
   vertex.data().pagerank = newval;
   vertex.data().counter++;
    if (vertex.data().counter < 10)</pre>
       vertex.signal();
                                              point in the future
  }
```

Per-vertex "counter"

If counter < 10, signal to scheduler to run the vertex program on the vertex again at some point in the future

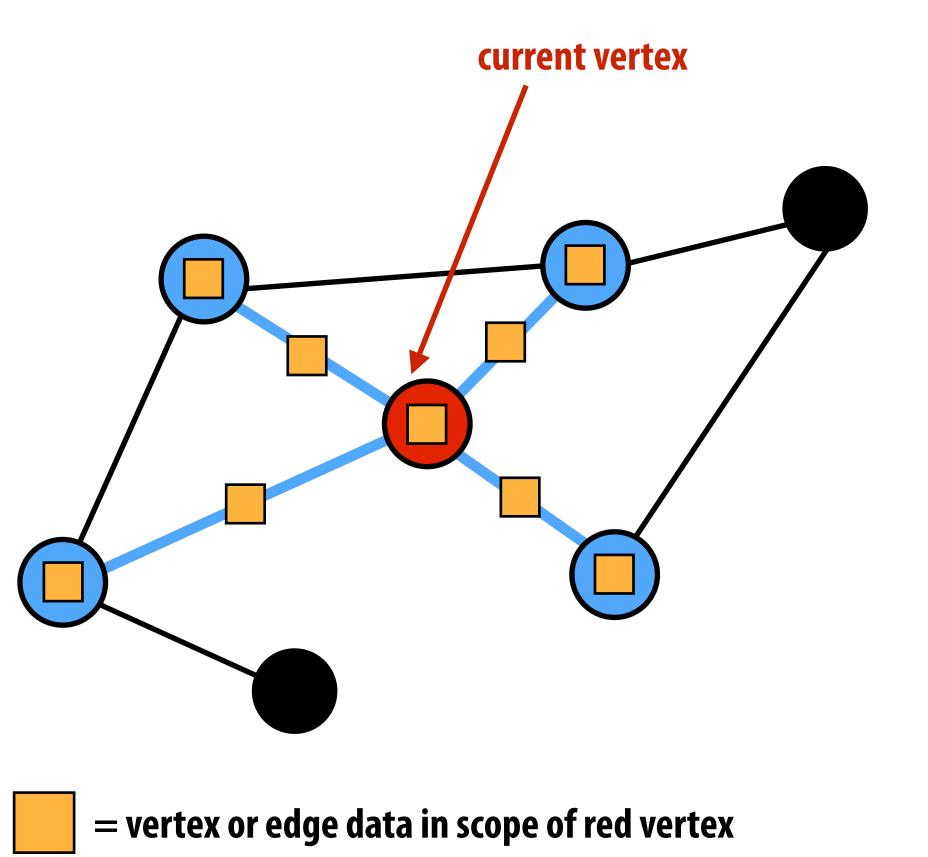
Signal: general primitive for scheduling work

Parts of graph may converge at different rates (iterate PageRank until convergence, but only for vertices that need it)

```
class pagerank_program:
      public graphlab::ivertex_program<graph_type, double>,
      public graphlab::IS_POD_TYPE {
                             Image: Private variable set during apply phase,used during scatter phase
private:
 bool perform_scatter;
public:
   // Use the total rank of adjacent pages to update this page
 void apply(icontext_type& context, vertex_type& vertex,
             const gather_type& total) {
    double newval = total * 0.85 + 0.15;
    double oldval = vertex.data().pagerank;
    vertex.data().pagerank = newval;
    perform_scatter = (std::fabs(oldval - newval) > 1E-3);
  }
 // Scatter now needed if algorithm has not converged
  edge dir_type scatter_edges(icontext_type& context,
                               const vertex_type& vertex) const {
    if (perform_scatter) return graphlab::OUT_EDGES;
    else return graphlab::NO_EDGES;
   // Make sure surrounding vertices are scheduled
   void scatter(icontext_type& context, const vertex_type& vertex,
               edge_type& edge) const {
    context.signal(edge.target());
  }
};
```


Synchronizing parallel execution

Local neighborhood of vertex (vertex's "scope") can be read and written to by a vertex program



Programs specify what granularity of atomicity ("consistency") they want **GraphLab runtime to provide: this** determines amount of available parallelism

– "<u>Full consistency</u>": implementation ensures no other execution reads or writes to data in scope of v when vertex program for v is running.

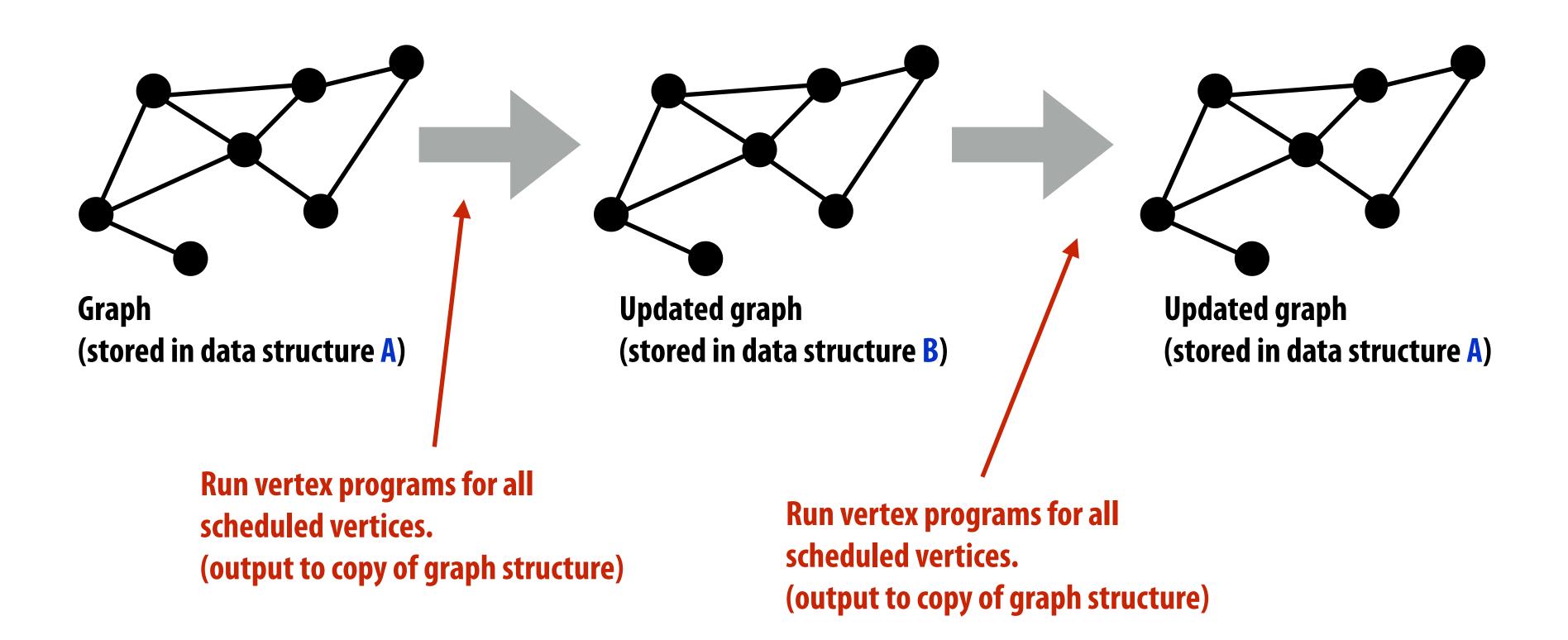
"Edge consistency": no other execution reads or writes any data in v or in edges adjacent to v

— "<u>Vertex consistency</u>": no other execution reads or writes to data in v ...

GraphLab: job scheduling order

GraphLab implements several work scheduling policies

Synchronous: update all scheduled vertices "simultaneously" (vertex programs observe no updates from programs run on other vertices in same "round")



GraphLab: job scheduling order

GraphLab implements several work scheduling policies

- Synchronous: update all vertices simultaneously (vertex programs observe no updates from programs run on other vertices in same "round")
- **Round-robin**: vertex programs observe most recent updates
- Graph coloring
- Dynamic: based on new work created by signal
 - Several implementations: fifo, priority-based, "splash" ...
- **Application developer has flexibility for choosing consistency guarantee and** scheduling policy
 - Implication: choice of schedule impacts program's correctness/output
 - Our opinion: this seems like a weird design at first glance, but this is common (and necessary) in the design of efficient graph algorithms

Summary: GraphLab concepts

- **Program state: data on graph vertices and edges + globals**
- **Operations: per-vertex update programs and global reduction** functions (reductions not discussed today)
 - Simple, intuitive description of work (follows mathematical formulation)
 - Graph restricts data access in vertex program to local neighborhood
 - Asynchronous execution model: application creates work dynamically by "signaling vertices" (enable lazy execution, work efficiency on real graphs)

Choice of scheduler and consistency implementation

- In this domain, the order in which nodes are processed can be critical property for both performance and quality of result
- **Application responsible for choosing right scheduler for its needs**

Graph Framework Taxonomy

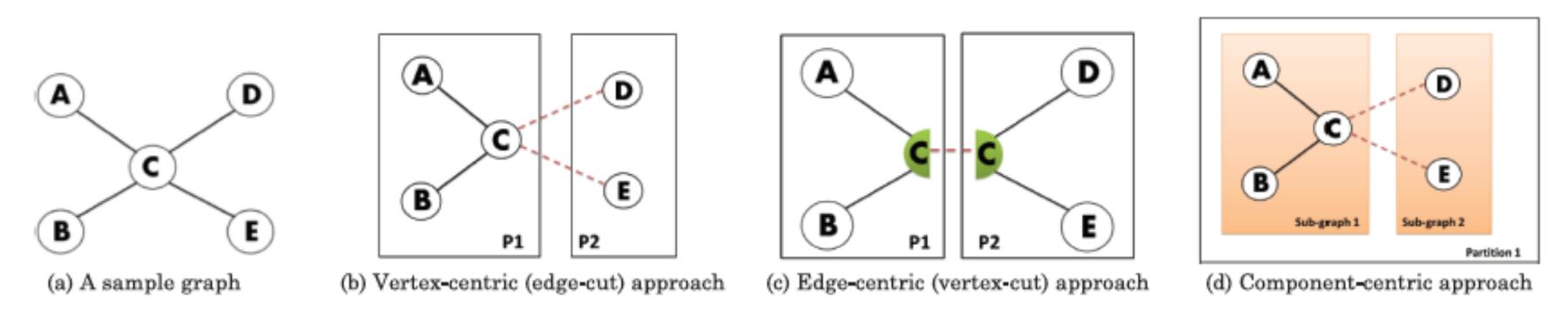


Figure: Safiollah Heidari, Yogesh Simmhan, Rodrigo N. Calheiros, and Rajkumar Buyya. 2018. Scalable Graph Processing Frameworks: A Taxonomy and Open Challenges. ACM Comput. Surv. 51, 3, Article 60 (June 2018).

Vertex centric: GraphLab, Pregel, GPS Edge centric: Chaos, X-Stream Sub-graph centric: Giraph++, GoFFish

PageRank in Pregel

```
class PageRankVertex
    : public Vertex<double, void, double> {
public:
 virtual void Compute(MessageIterator* msgs) {
    if (superstep() >= 1) {
      double sum = 0;
      for (; !msgs->Done(); msgs->Next())
        sum += msgs->Value();
      *MutableValue() = 0.15 / NumVertices() + 0.85 * sum;
    }
    if (superstep() < 30) {</pre>
      const int64 n = GetOutEdgeIterator().size();
      SendMessageToAllNeighbors(GetValue() / n);
    } else {
      VoteToHalt();
    }
 }
};
```

Elements of good domain-specific programming system design

#1: good systems identify the most important cases, and provide most benefit in these situations

- Structure of code should mimic natural structure of problems in the domain
 - e.g., graph processing algorithms are designed in terms of per-vertex operations
- **<u>Efficient expression</u>: common operations are easy and intuitive to express**
- Efficient implementation: the most important optimizations in the domain are performed by the system for the programmer
 - **<u>Our experience</u>: a parallel programming system with "convenient" abstractions</u>** that precludes best-known implementation strategies will almost always fail

#2: good systems are usually simple systems

- They have a small number of key primitives and operations
 - GraphLab: run computation per vertex, trigger new work by signaling
 - But GraphLab's design gets messy with all the scheduling options
 - Halide: only a few scheduling primitives
 - Hadoop: map + reduce

Allows compiler/runtime to focus on optimizing these primitives

- Provide parallel implementations, utilize appropriate hardware
- Common question that good architects ask: "do we really need that?" (can this concept be reduced to a primitive we already have?)
 - For every domain-specific primitive in the system: there better be a strong performance or expressivity justification for its existence

#3: good primitives compose

- **Composition of primitives allows for wide application scope**, even if scope remains limited to a domain
 - e.g., frameworks discussed today support a wide variety of graph algorithms
- **Composition often allows for generalizable optimization**
- Sign of a good design:
 - System ultimately is used for applications original designers never anticipated
- Sign that a new feature <u>should not</u> be added (or added in a **better** way):
 - The new feature does not compose with all existing features in the system

Optimizing graph computations (now we are talking about implementation)

Wait a minute...

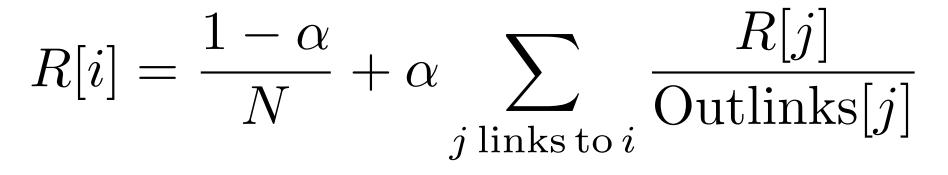
- So far in this lecture, we've discussed issues such as parallelism, synchronization ...
- But graph processing typically has low arithmetic intensity

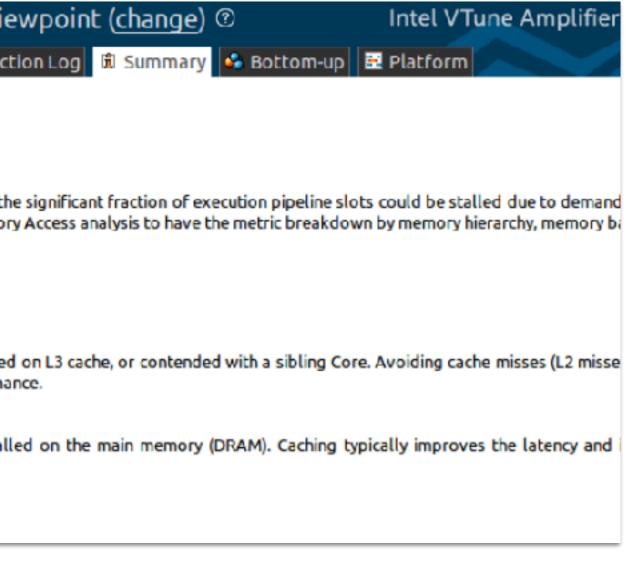
Walking over edges accesses information from "random" graph vertices

VTune profiling results: Memory bandwidth bound!

	• •	
🖉 Memory Access	Memory Usa	age vie
🔄 🕀 Analysis Target 🐴	Analysis Type 📲	Collec
Selapsed Time [™]	: 0.713s	
CPU Time [®] :	2.484s	
	50.5%	
load and stores. Us	high. This can indica e VTune Amplifier X ation by memory ob	(E Memo
L1 Bound [©] :	0.027	
L2 Bound	0.020	
L3 Bound ⁽⁰⁾ :	0.127	
	vs how often CPU w tency and increases	
DRAM Bound	0.320	
This metric sho performance.	ws how often CPU	was stal
Other:	1.2%	
Average Latency (c	ycles) 🗄 22	

Or just consider PageRank: ~ 1 **multiply-accumulate per iteration of summation loop**





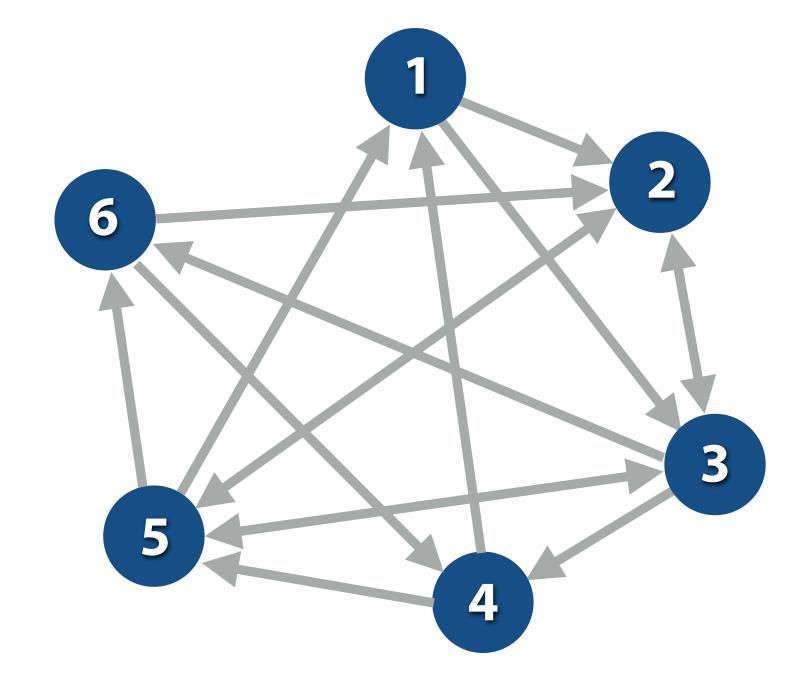
Two ideas to increase the performance of operations on large graphs *

- **Reorganize graph structure to increase locality** 1.
- 2. Compress the graph

* Both optimizations might be performed by a framework without application knowledge

Directed graph representation

Vertex Id	1		2		3				4		5				6	
Outgoing Edges	2	3	3	5	2	4	5	6	1	5	1	2	3	6	2	4
Vertex Id	1															
vertex lu	L.		2				3			4		5			6	



Memory footprint challenge of large graphs

<u>Challenge</u>: cannot fit all edges in memory for large graphs (graph vertices may fit)

- From example graph representation:
 - Each edge represented twice in graph structure (as incoming/outgoing edge)
 - 8 bytes per edge to represent adjacency
- May also need to store per-edge values (e.g., 4 bytes for a per-edge weight) **1 billion edges (modest): ~12 GB of memory for edge information** Algorithm may need multiple copies of per-edge structures (current, prev data, etc.)

Could employ cluster of machines to store graph in memory

Rather than store graph on disk

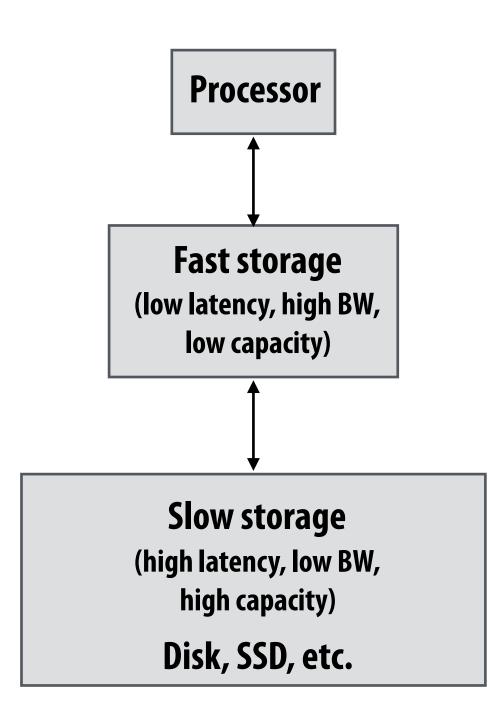
Would prefer to process large graphs on a single machine

- Managing clusters of machines is difficult
- Partitioning graphs is expensive (also needs a lot of memory) and difficult

"Streaming" graph computations

- Graph operations make "random" accesses to graph data (edges) adjacent to vertex v may distributed arbitrarily throughout storage)
 - Single pass over graph's edges might make billions of fine-grained accesses to disk
- Streaming data access pattern
 - Make large, predictable data accesses to slow storage (achieve high bandwidth data transfer)
 - Load data from slow storage into fast storage*, then reuse it as much as possible before discarding it (achieve high arithmetic intensity)
 - Can we restructure graph data structure so that data access requires only a small number of efficient bulk loads/stores from slow storage?

* By fast storage, in this context I mean DRAM. However, techniques for streaming from disk into memory would also apply to streaming from memory into a processor's cache



Sharded graph representation

- **Partition** graph vertices into intervals (sized so that subgraph for interval fits in memory)
- Store vertices and only incoming edges to these vertices are stored together in a shard
- Sort edges in a shard by source vertex id

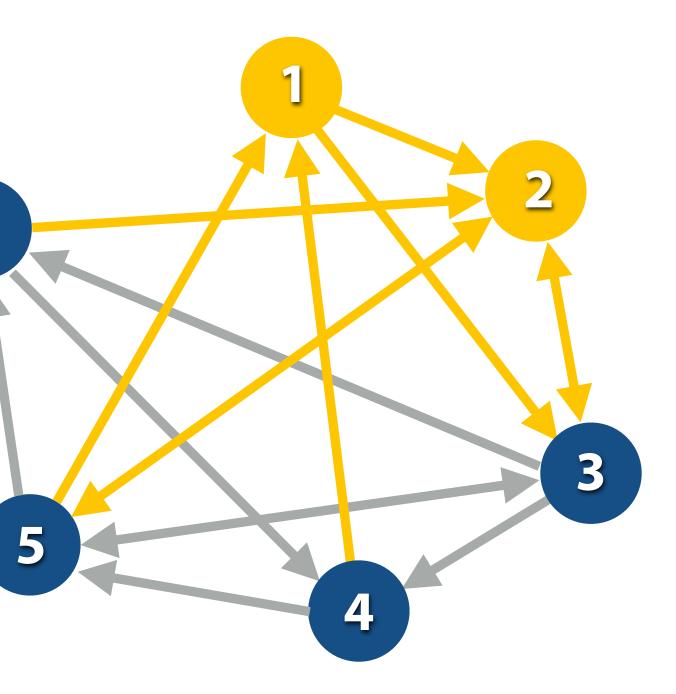
	Shard 1: vertices (1-2)			ve	Shard rtices		Shard 3: vertices (5-6)				
S	ſC	dst	value	src	dst	value	src	dst	value		
1	-	2	0.3	1	3	0.4	2	5	0.6		
3	}	2	0.2	2	3	0.9	3	5	0.9		
4	Ļ	1	0.8	3	4	0.15		6	0.85		
5	5	1	0.25	5	3	0.2	4	5	0.3		
		2	0.6	6	4	0.9	5	6	0.2		
6	•	2	0.1								

Yellow = data required to process subgraph containing vertices in shard 1

Notice: to construct subgraph containing vertices in shard 1 and their incoming and outgoing edges, only need to load contiguous information from other P-1 shards

Writes to updated outgoing edges require P-1 bulk writes

GraphChi: Large-scale graph computation on just a PC [Kryola et al. 2013]



Sharded graph representation

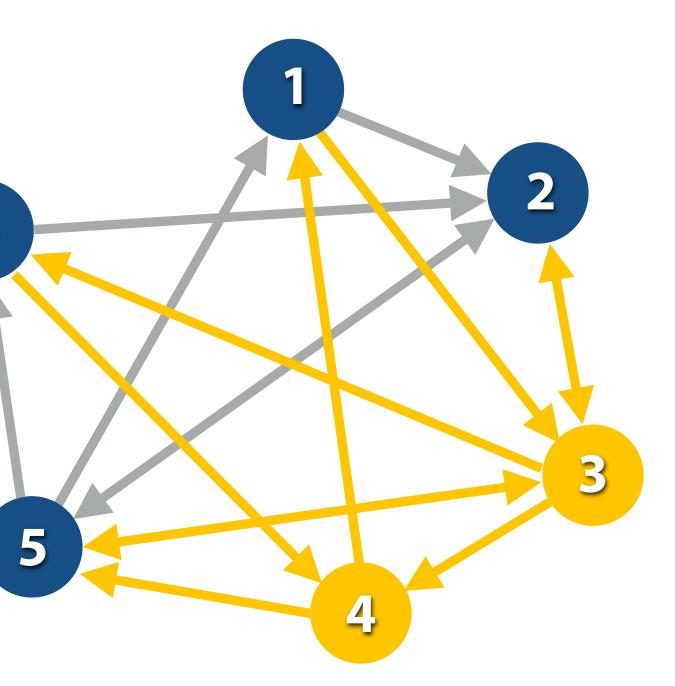
- **Partition** graph vertices into intervals (sized so that subgraph for interval fits in memory)
- Store vertices and only incoming edges to these vertices are stored together in a shard
- Sort edges in a shard by source vertex id

Shard 1: vertices (1-2)				-	Shard rtices	2: (3-4)	Shard 3: vertices (5-6)				
src	dst	value	SI	ſC	dst	value	src	dst	value		
1	2	0.3	1		3	0.4	2	5	0.6		
3	2	0.2	2	-	3	0.9	3	5	0.9		
4	1	0.8	3	}	4	0.15		6	0.85		
5	1	0.25	5		3	0.2	4	5	0.3		
_	2	0.6	6	5	4	0.9	5	6	0.2		
6	2	0.1									

Yellow = data required to process subgraph containing vertices in shard 2

 $\mathbf{6}$

GraphChi: Large-scale graph computation on just a PC [Kryola et al. 2013]



Sharded graph representation

- **Partition** graph vertices into intervals (sized so that subgraph for interval fits in memory)
- Store vertices and only incoming edges to these vertices are stored together in a shard
- Sort edges in a shard by source vertex id

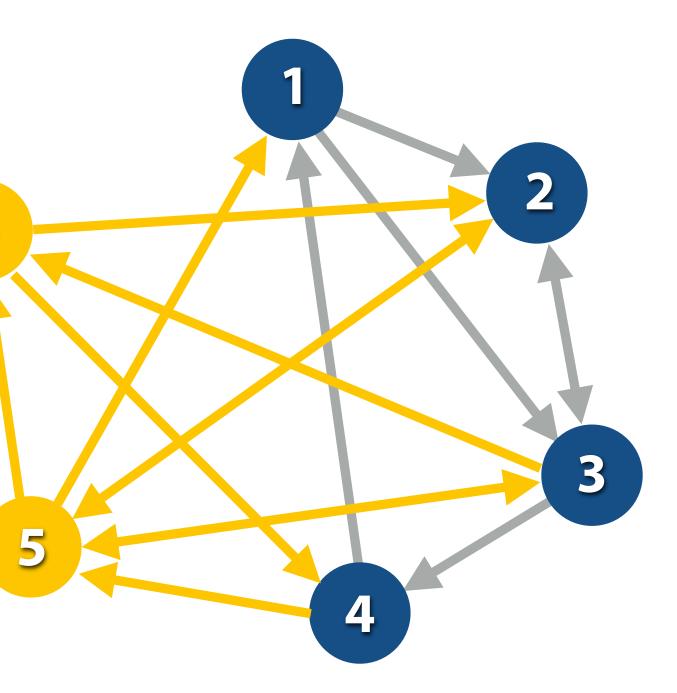
	Sharc rtices	11: (1-2)		Shard rtices		Shard 3: vertices (5-6)			
src	dst	value	src	dst	value	Src	dst	value	
1	2	0.3	1	3	0.4	2	5	0.6	
3	2	0.2	2	3	0.9	3	5	0.9	
4	1	0.8	3	4	0.15		6	0.85	
5	1	0.25	5	3	0.2	4	5	0.3	
	2	0.6	6	4	0.9	5	6	0.2	
6	2	0.1							

Yellow = data required to process subgraph containing vertices in shard 3

Observe: due to sort of incoming edges, iterating over all intervals results in contiguous sliding window over the shards

6

GraphChi: Large-scale graph computation on just a PC [Kryola et al. 2013]



Putting it all together: looping over all graph edges

For each partition i of vertices:

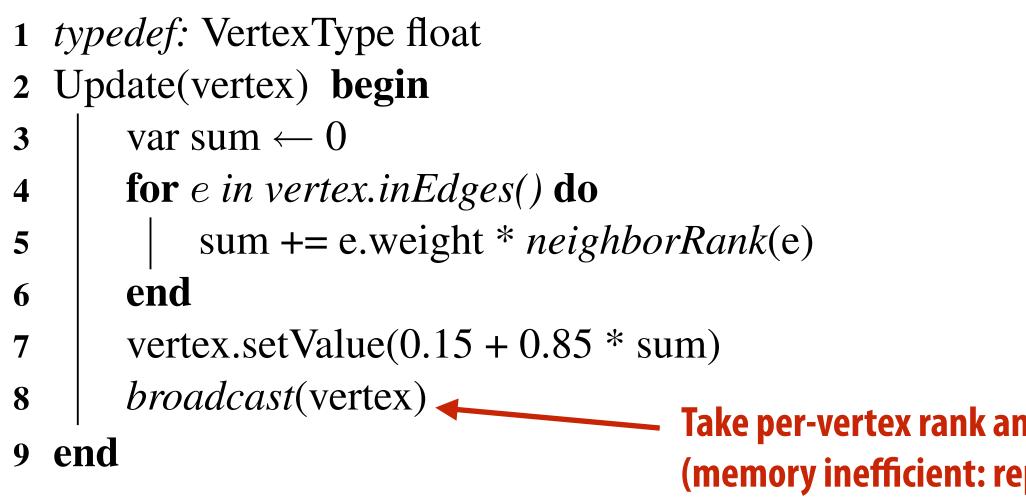
- Load shard i (contains all incoming edges)
- For each other shard s
 - Load section of s containing data for edges leaving i and entering s
- Construct subgraph in memory
- Do processing on subgraph

Note: a good implementation could hide disk I/O by prefetching data for next iteration of loop

PageRank in GraphChi

GraphChi is a system that implements the out-of-core sliding window approach

PageRank in GraphChi:

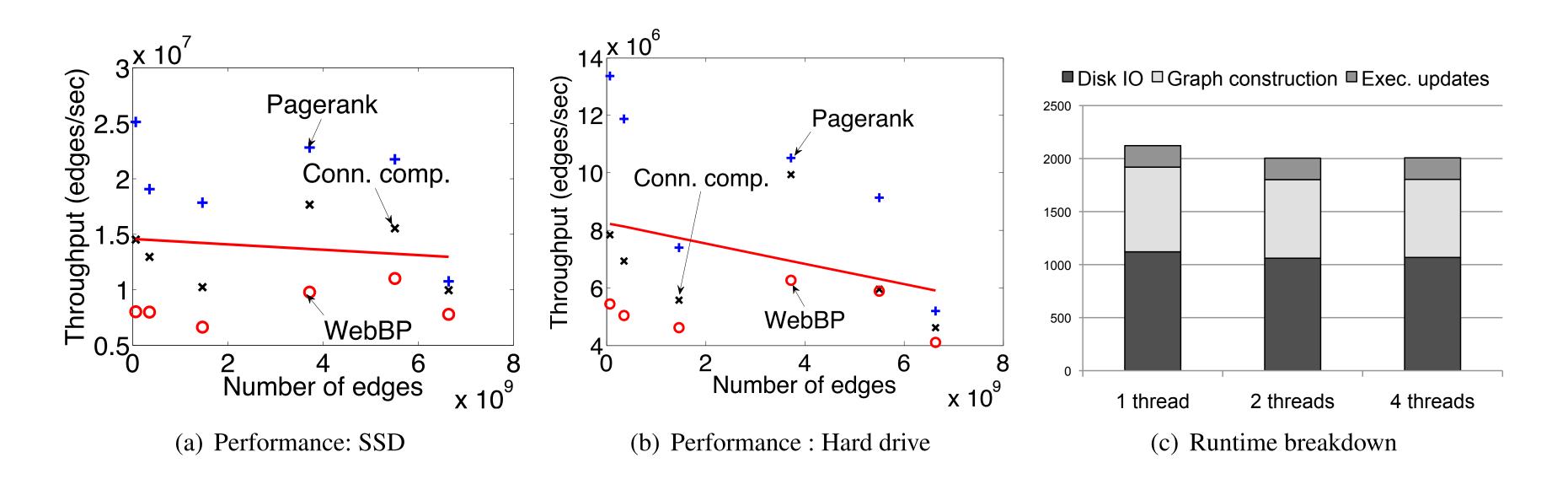


Alternative model: assume vertex data can be kept in memory and redefine neighborRank() function

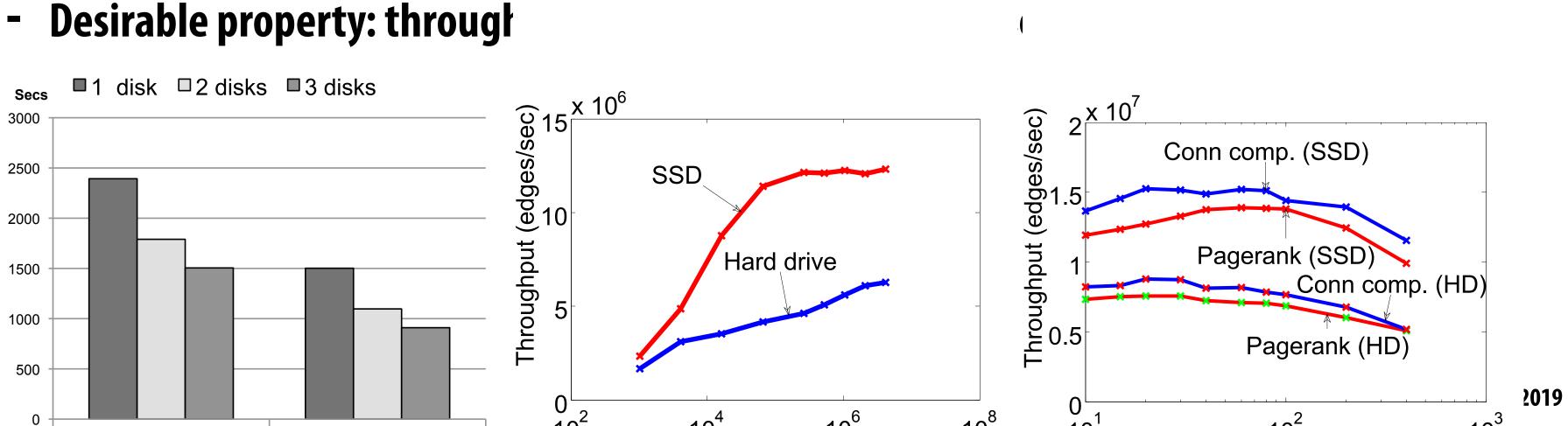
- 1 *typedef:* EdgeType { float weight; }
- 2 float[] in_mem_vert
- 3 neighborRank(edge) begin
- return edge.weight * in_mem_vert[edge.vertex_id]
- 5 end

Take per-vertex rank and distribute to all outbound edges (memory inefficient: replicates per-vertex rank to all edges)

Performance on a Macmini (8 GB RAM)



Throughput (edges/sec) romains stahlo as aranh size is increased



Graph compression

- **<u>Recall</u>: graph operations are often BW-bound**
- **Implication:** using CPU instructions to reduce BW requirements can benefit overall performance (the processor is waiting on memory anyway!)
- <u>Idea: store graph compressed in memory, decompress on-the-fly</u> when operation wants to read data

Compressing an edge list

Vertex Id 32

1001 10 5 30 6 1025 200000 1010 1024 100000 1030 275000 Outgoing Edges

- 1. Sort edges for each vertex
 - 5 6 10 30 1001 1010 1024 1025 1030 100000 200000 275000
- 2. Compute differences

10 30 1001 1010 1024 1025 1030 100000 200000 275000 0 4 20 971 9 5 98070 100000 75000 1 14 1

3. Group into sections requiring same number of bytes

		1 byte			2 bytes		1 by	yte	
vertex index	-27	1	4	20	971	. 9	14	1	
relative to					1001			1025	1

6 bits: number of edges in group

2 bits: encoding width (1, 2, 4 bytes)

4. Encode deltas

1-byte group header

Uncompressed encoding: 12 x 4 bytes = 48 bytes **Compressed encoding: 26 bytes**

- [TWO_BYTE, 1], 971

[FOUR_BYTE, 3], 98070, 100000, 75000 (13 bytes)

275000 1030 100000 200000 98070 100000 75000 5 4 bytes

(5 bytes) [ONE_BYTE, 4], -27, 1, 4, 20

(5 bytes) [ONE_BYTE, 4], 9, 14, 1, 5

> CMU 15-418/618, Fall 2019 39

(3 bytes)

Performance impact of graph compression [Shun et al. DCC 2015]



- **Benefit of graph compression increases with higher core count, since** computation is increasingly bandwidth bound
- Performance improves even if graphs already fit in memory
 - Added benefit is that compression enables larger graphs to fit in memory

* Different data points on graphs are different compression schemes (byte-RLE is the scheme on the previous slide)

Summary

- **Today there is significant interest in high performance** computation on large graphs
- Graph processing frameworks abstract details of efficient graph processing from application developer
 - handle parallelism and synchronization for the application developer
 - handle graph distribution (across a cluster)
 - may also handle graph compression and efficient iteration order (e.g., to efficiently stream off slow storage)
- Great example of domain-specific programming frameworks
 - for more, see: GraphLab, GraphX, Pregel, Ligra/Ligra+