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Training/evaluating deep neural networks
Technique leading to many high-profile AI advances in recent years
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Speech recognition/natural 
language processing

Image interpretation 
and understanding
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What is a deep neural network?
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A basic unit: 
Unit with n inputs described by n+1 parameters 
(weights + bias)
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Input: Unit (“neuron”)

output

f(x) = max(0, x)

Example: rectified linear unit (ReLU)

Biological inspiration:

Machine learning interpretation:

Basic computational interpretation: 
It’s just a circuit! 

unit output corresponds loosely to activation 
of neuron

binary classifier: interpret output as the 
probability of one class

f(x) =
1

1 + e�x
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Two Distinct Issues with Deep Networks
▪ Evaluation 

- often takes milliseconds  

▪ Training 
- often takes hours, days, weeks 

4
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What is a deep neural network? topology
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Input: Output:

This network has: 4 inputs, 1 output, 7 hidden units 
“Deep” = at least one hidden layer 
Hidden layer 1: 3 units x (4 weights + 1 bias) = 15 parameters 
Hidden layer 2: 4 units x (3 weights + 1 bias) = 16 parameters 

Hidden layers:

Note fully-connected topology in this example
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What is a deep neural network? topology
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Fully connected layer

Sparsely (locally) 
connected

Inputs

Inputs

OutputsOutput
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int	WIDTH	=	1024;	

int	HEIGHT	=	1024;	

float	input[(WIDTH+2)	*	(HEIGHT+2)];	

float	output[WIDTH	*	HEIGHT];	

float	weights[]	=	{1.0/9,	1.0/9,	1.0/9,	

																			1.0/9,	1.0/9,	1.0/9,	

																			1.0/9,	1.0/9,	1.0/9};	

for	(int	j=0;	j<HEIGHT;	j++)	{	

		for	(int	i=0;	i<WIDTH;	i++)	{	

				float	tmp	=	0.f;	

				for	(int	jj=0;	jj<3;	jj++)	

						for	(int	ii=0;	ii<3;	ii++)	

								tmp	+=	input[(j+jj)*(WIDTH+2)	+	(i+ii)]	*	weights[jj*3	+	ii];	

				output[j*WIDTH	+	i]	=	tmp;	

		}	

}

Recall image convolution (3x3 conv)

Convolutional layer: locally connected AND all units in layer share 
the same parameters (same weights + same bias): 
(note: network diagram only shows links due to one iteration of ii loop)

Inputs

. . .. .
 . . .
 .

Inputs

Conv 
Layer
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int	WIDTH	=	1024;	

int	HEIGHT	=	1024;	

int	STRIDE	=	2;	

float	input[(WIDTH+2)	*	(HEIGHT+2)];	

float	output[(WIDTH/STRIDE)	*	(HEIGHT/STRIDE)];	

float	weights[]	=	{1.0/9,	1.0/9,	1.0/9,	

																			1.0/9,	1.0/9,	1.0/9,	

																			1.0/9,	1.0/9,	1.0/9};	

for	(int	j=0;	j<HEIGHT;	j+=STRIDE)	{	

		for	(int	i=0;	i<WIDTH;	i+=STRIDE)	{	

				float	tmp	=	0.f;	

				for	(int	jj=0;	jj<3;	jj++)	

						for	(int	ii=0;	ii<3;	ii++)	{	

									tmp	+=	input[(j+jj)*(WIDTH+2)	+	(i+ii)]	*	weights[jj*3	+	ii];	

						output[(j/STRIDE)*WIDTH	+	(i/STRIDE)]	=	tmp;	

		}	

}

Strided 3x3 convolution

Inputs

Convolutional layer with stride 2

c

Inputs
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What does convolution using these filter 
weights do?
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2

4
.075 .124 .075
.124 .204 .124
.075 .124 .075

3

5

Original

Blurred

“Gaussian Blur”
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What does convolution with these filters do?
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Extracts horizontal 
gradients

2

4
�1 0 1
�2 0 2
�1 0 1

3

5

2

4
�1 �2 �1
0 0 0
1 2 1

3

5

Extracts vertical 
gradients
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Gradient detection filters
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Horizontal gradients

Vertical gradients

Note: you can think of a filter as a 
“detector” of a pattern, and the 
magnitude of a pixel in the output 
image as the “response” of the filter 
to the region surrounding each pixel 
in the input image
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Applying many filters to an image at once
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Input: image (single channel): 
W x H

3x3 spatial convolutions on image 
3x3 x num_filters weights

…

Output: filter responses 
W x H x num_filters

…

Each filter described by 
unique set of weights 
(responds to different 

image phenomena)

Filter responses 
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Applying many filters to an image at once
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Input RGB image (W x H x 3)
96 11x11x3 filters 
(operate on RGB) 96 responses (normalized)
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Adding additional layers
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Input: image 
(single channel) 

W x H

3x3 spatial convolutions 
3x3 x num_filters weights

…

Output: filter responses 
W x H x num_filters

…

Each filter described by 
unique set of weights 
(responds to different 

image phenomena)

Filter responses 

post ReLU 
W x H x num_filters

…ReLU Pool
…

post pool 
W/2 x H/2 x num_filters

(max response 
in 2x2 region) 

Note data reduction as a 
result of pooling

Conv

…
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Modern object detection networks
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Sequences of conv + reLU + (optional) pool layers

AlexNet [Krizhevsky12]: 5 convolutional layers + 3 fully connected 

[VGG illustration credit: Yang et al.]

VGG-16 [Simonyan15]: 13 convolutional layers
input: 224 x 224 RGB 
conv/reLU: 3x3x3x64 
conv/reLU: 3x3x64x64 
maxpool 
conv/reLU: 3x3x64x128 
conv/reLU: 3x3x128x128 
maxpool

conv/reLU: 3x3x128x256 
conv/reLU: 3x3x256x256 
conv/reLU: 3x3x256x256 
maxpool 
conv/reLU: 3x3x256x512 
conv/reLU: 3x3x512x512 
conv/reLU: 3x3x512x512 
maxpool

conv/reLU: 3x3x512x512 
conv/reLU: 3x3x512x512 
conv/reLU: 3x3x512x512 
maxpool 
fully-connected 4096 
fully-connected 4096 
fully-connected 1000 
soft-max

  

Our model

● Max-pooling layers follow first, second, and 
fifth convolutional layers

● The number of neurons in each layer is given 
by 253440, 186624, 64896, 64896, 43264, 
4096, 4096, 1000
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Efficiently implementing convolution layers

16
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Direct implementation of conv layer
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float	input[INPUT_HEIGHT][INPUT_WIDTH][INPUT_DEPTH];	

float	output[INPUT_HEIGHT][INPUT_WIDTH][LAYER_NUM_FILTERS];	

float	layer_weights[LAYER_CONVY,	LAYER_CONVX,	INPUT_DEPTH];	

//	assumes	convolution	stride	is	1	

for	(int	img=0;	img<IMAGE_BATCH_SIZE;	img++)	

			for	(int	j=0;	j<INPUT_HEIGHT;	j++)	

						for	(int	i=0;	i<INPUT_WIDTH;	i++)	

									for	(int	f=0;	f<LAYER_NUM_FILTERS;	f++)	{	

												output[j][i][f]	=	0.f;	

												for	(int	kk=0;	kk<INPUT_DEPTH;	kk++)		//	sum	over	filter	responses	of	input	channels	

															for	(int	jj=0;	jj<LAYER_CONVY;	jj++)	//	spatial	convolution	

													for	(int	ii=0;	ii<LAYER_CONVX;	ii+)		//	spatial	convolution	

																	output[j][i][f]	+=	layer_weights[f][jj][ii][kk]	*	input[j+jj][i+ii][kk];	

					}

Seven loops with significant input data reuse: reuse of filter weights (during convolution), and 
reuse of input values (across different filters)

But must roll your own highly optimized implementation of a complicated loop nest.
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float	A[M][K];	

float	B[K][N];	

float	C[M][N];	

//	compute	C	+=	A	*	B	

#pragma	omp	parallel	for	

for	(int	j=0;	j<M;	j++)	

		for	(int	i=0;	i<N;	i++)	

					for	(int	k=0;	k<K;	k++)	

									C[j][i]	+=	A[j][k]	*	B[k][i];

Dense matrix multiplication
K

M

N

M K

N

= X

What is the problem with this implementation?

Low arithmetic intensity (does not exploit temporal locality in access to A and B)

C A B
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float	A[M][K];	

float	B[K][N];	

float	C[M][N];	

//	compute	C	+=	A	*	B	

#pragma	omp	parallel	for	

for	(int	jblock=0;	jblock<M;	jblock+=BLOCKSIZE_J)	

		for	(int	iblock=0;	iblock<N;	iblock+=BLOCKSIZE_I)	

					for	(int	kblock=0;	kblock<K;	kblock+=BLOCKSIZE_K)	

								for	(int	j=0;	j<BLOCKSIZE_J;	j++)	

											for	(int	i=0;	i<BLOCKSIZE_I;	i++)	

														for	(int	k=0;	k<BLOCKSIZE_K;	k++)	

																	C[jblock+j][iblock+i]	+=	A[jblock+j][kblock+k]	*	B[kblock+k][iblock+i];

Blocked dense matrix multiplication
K

M

N

M K

N

= XC A B

Idea: compute partial result for block of C while required blocks of A and B remain in cache 
(Assumes BLOCKSIZE chosen to allow block of A, B, and C to remain resident)

Self check: do you want as big a BLOCKSIZE as possible? Why? 
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Convolution as matrix-vector product
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2

6664

w0

w1
...
w8

3

7775

X00 X01 X02 X03 ...

X10 X11 X12 X13 ...

X20 X21 X22 X23 ...

X30 X31 X32 X33 ...

... ... ... ...

3x3 = 9

0			0			0			0			x00	x01	0			x10	x11

WxH

...

Construct matrix from elements of input image

Note: 0-pad matrix

O(N) storage overhead for filter with N elements 
Must construct input data matrix
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3x3 convolution as matrix-vector product
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2

6664

w0

w1
...
w8

3

7775

X00 X01 X02 X03 ...

X10 X11 X12 X13 ...

X20 X21 X22 X23 ...

X30 X31 X32 X33 ...

... ... ... ...

9

0			0			0			0			x00	x01	0			x10	x11

0			0			0			x00	x01	x02	x10	x11	x12

0			0			0			x01	x02	x03	x11	x12	x13

WxH

...

x00	x01	x02	x10	x11	x12	x20	x21	x22

Construct matrix from elements of input image

Note: 0-pad matrix

...

O(N) storage overhead for filter with N elements 
Must construct input data matrix
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Multiple convolutions as matrix-matrix mult
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X00 X01 X02 X03 ...

X10 X11 X12 X13 ...

X20 X21 X22 X23 ...

X30 X31 X32 X33 ...

... ... ... ...

9

0			0			0			0			x00	x01	0			x10	x11

0			0			0			x00	x01	x02	x10	x11	x12

0			0			0			x01	x02	x03	x11	x12	x13

WxH
...

x00	x01	x02	x10	x11	x12	x20	x21	x22

2

6664

w00 w01 w02 · · · w0N

w10 w11 w12 · · · w0N
...

...
...

...
w80 w81 w82 · · · w8N

3

7775

num filters

...
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Multiple convolutions on multiple input channels
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X00 X01 X02 X03 ...

X10 X11 X12 X13 ...

X20 X21 X22 X23 ...

X30 X31 X32 X33 ...

... ... ... ...

9 x num input channels

0			0			0			0			x00	x01	0			x10	x11

0			0			0			x00	x01	x02	x10	x11	x12

0			0			0			x01	x02	x03	x11	x12	x13WxH

...

x00	x01	x02	x10	x11	x12	x20	x21	x22

num filters

...

channel 1

channel 0

channel 2

0			0			0			0			x00	x01	0			x10	x11

0			0			0			x00	x01	x02	x10	x11	x12

0			0			0			x01	x02	x03	x11	x12	x13

...

x00	x01	x02	x10	x11	x12	x20	x21	x22

...

0			0			0			0			x00	x01	0			x10	x11

0			0			0			x00	x01	x02	x10	x11	x12

0			0			0			x01	x02	x03	x11	x12	x13

...

x00	x01	x02	x10	x11	x12	x20	x21	x22

channel 0 values channel 1 values channel 2 values

For each filter, sum responses over input channels 

Equivalent to (3 x 3 x num_channels) convolution 
on (W x H x num_channels) input data

2

6666666666666666666664

w000 w001 w002 · · · w00N

w010 w011 w012 · · · w01N
...

...
...

...
w080 w081 w082 · · · w08N

w100 w101 w102 · · · w10N

w110 w111 w112 · · · w11N
...

...
...

...
w180 w181 w182 · · · w18N

w200 w201 w202 · · · w20N

w210 w211 w212 · · · w21N
...

...
...

...
w280 w281 w282 · · · w28N

3

7777777777777777777775
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VGG memory footprint
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input: 224 x 224 RGB image 
conv: (3x3x3) x 64 
conv: (3x3x64) x 64 
maxpool 
conv: (3x3x64) x 128 
conv: (3x3x128) x 128 
maxpool 
conv: (3x3x128) x 256 
conv: (3x3x256) x 256 
conv: (3x3x256) x 256 
maxpool 
conv: (3x3x256) x 512 
conv: (3x3x512) x 512 
conv: (3x3x512) x 512 
maxpool 
conv: (3x3x512) x 512 
conv: (3x3x512) x 512 
conv: (3x3x512) x 512 
maxpool 
fully-connected 4096 
fully-connected 4096 
fully-connected 1000 
soft-max

Calculations assume 32-bit values (image batch size = 1)
weights mem:

output size 
(per image)

— 
6.5 KB 
144 KB 
— 
228 KB 
576 KB 
— 
1.1 MB 
2.3 MB 
2.3 MB 
— 
4.5 MB 
9 MB 
9 MB 
— 
9 MB 
9 MB 
9 MB 
— 
392 MB 
64 MB 
15.6 MB

224x224x3 
224x224x64 
224x224x64 
112x112x64 
112x112x128 
112x112x128 
56x56x128 
56x56x256 
56x56x256 
56x56x256 
28x28x256 
28x28x512 
28x28x512 
28x28x512 
14x14x512 
14x14x512 
14x14x512 
14x14x512 
7x7x512 
4096 
4096 
1000 
1000

150K 
12.3 MB 
12.3 MB 
3.1 MB 
6.2 MB 
6.2 MB 
1.5 MB 
3.1 MB 
3.1 MB 
3.1 MB 
766 KB 
1.5 MB 
1.5 MB 
1.5 MB 
383 KB 
383 KB 
383 KB 
383 KB 
98 KB 
16 KB 
16 KB 
4 KB 
4 KB

(mem)

multiply by next layer’s 
conv window size to form 
input matrix to next conv 
layer!!! (for VGG, this is a 9x 
data amplification) 

inputs/outputs get 
multiplied by image 
batch size
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Reducing network footprint
▪ Large storage cost for model parameters 

- AlexNet model: ~200 MB 
- VGG-16 model: ~500 MB 
- This doesn’t even account for intermediates during evaluation 

▪ Footprint: cumbersome to store, download, etc. 
- 500 MB app downloads make users unhappy!

25

▪ Consider energy cost of 1B parameter network 
- Running on input stream at 20 Hz  
- 640 pJ per 32-bit DRAM access 
- (20 x 1B x 640pJ) = 12.8W for DRAM access 

(more than power budget of any modern smartphone)
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Compressing a network
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Step 1: prune low-weight links (iteratively retrain network, then prune)  
- Over 90% of weights can be removed without significant loss of accuracy 
- Store weight matrices in compressed sparse row (CSR) format 

Step 2: weight sharing: make surviving connects share a small set of weights 
- Cluster weights via k-means clustering (irregular (“learned”) quantization) 
- Compress weights by only storing cluster index (lg(k) bits)  
- Retrain network to improve quality of cluster centroids

Indicies				1				4			9		...	
Value					1.8		0.5		2.1	

0 1.8 0 0 0.5 0 0 0 0 2.1 ...

Published as a conference paper at ICLR 2016

Figure 2: Representing the matrix sparsity with relative index. Padding filler zero to prevent overflow.
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lr0:

2:

3:

Figure 3: Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom).

We store the sparse structure that results from pruning using compressed sparse row (CSR) or
compressed sparse column (CSC) format, which requires 2a+n+1 numbers, where a is the number
of non-zero elements and n is the number of rows or columns.

To compress further, we store the index difference instead of the absolute position, and encode this
difference in 8 bits for conv layer and 5 bits for fc layer. When we need an index difference larger
than the bound, we the zero padding solution shown in Figure 2: in case when the difference exceeds
8, the largest 3-bit (as an example) unsigned number, we add a filler zero.

3 TRAINED QUANTIZATION AND WEIGHT SHARING

Network quantization and weight sharing further compresses the pruned network by reducing the
number of bits required to represent each weight. We limit the number of effective weights we need to
store by having multiple connections share the same weight, and then fine-tune those shared weights.

Weight sharing is illustrated in Figure 3. Suppose we have a layer that has 4 input neurons and 4
output neurons, the weight is a 4⇥ 4 matrix. On the top left is the 4⇥ 4 weight matrix, and on the
bottom left is the 4⇥ 4 gradient matrix. The weights are quantized to 4 bins (denoted with 4 colors),
all the weights in the same bin share the same value, thus for each weight, we then need to store only
a small index into a table of shared weights. During update, all the gradients are grouped by the color
and summed together, multiplied by the learning rate and subtracted from the shared centroids from
last iteration. For pruned AlexNet, we are able to quantize to 8-bits (256 shared weights) for each
CONV layers, and 5-bits (32 shared weights) for each FC layer without any loss of accuracy.

To calculate the compression rate, given k clusters, we only need log2(k) bits to encode the index. In
general, for a network with n connections and each connection is represented with b bits, constraining
the connections to have only k shared weights will result in a compression rate of:

r =
nb

nlog2(k) + kb
(1)

For example, Figure 3 shows the weights of a single layer neural network with four input units and
four output units. There are 4⇥4 = 16 weights originally but there are only 4 shared weights: similar
weights are grouped together to share the same value. Originally we need to store 16 weights each

3

Step 3: Huffman encode quantized weights 
and CSR indices  

[Han ICLR16]
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VGG-16 compression

27

Published as a conference paper at ICLR 2016

Table 4: Compression statistics for AlexNet. P: pruning, Q: quantization, H:Huffman coding.

Layer #Weights Weights%
(P)

Weight
bits
(P+Q)

Weight
bits
(P+Q+H)

Index
bits
(P+Q)

Index
bits
(P+Q+H)

Compress
rate
(P+Q)

Compress
rate
(P+Q+H)

conv1 35K 84% 8 6.3 4 1.2 32.6% 20.53%
conv2 307K 38% 8 5.5 4 2.3 14.5% 9.43%
conv3 885K 35% 8 5.1 4 2.6 13.1% 8.44%
conv4 663K 37% 8 5.2 4 2.5 14.1% 9.11%
conv5 442K 37% 8 5.6 4 2.5 14.0% 9.43%
fc6 38M 9% 5 3.9 4 3.2 3.0% 2.39%
fc7 17M 9% 5 3.6 4 3.7 3.0% 2.46%
fc8 4M 25% 5 4 4 3.2 7.3% 5.85%
Total 61M 11%(9⇥) 5.4 4 4 3.2 3.7% (27⇥) 2.88% (35⇥)

Table 5: Compression statistics for VGG-16. P: pruning, Q:quantization, H:Huffman coding.

Layer #Weights Weights%
(P)

Weigh
bits
(P+Q)

Weight
bits
(P+Q+H)

Index
bits
(P+Q)

Index
bits
(P+Q+H)

Compress
rate
(P+Q)

Compress
rate
(P+Q+H)

conv1 1 2K 58% 8 6.8 5 1.7 40.0% 29.97%
conv1 2 37K 22% 8 6.5 5 2.6 9.8% 6.99%
conv2 1 74K 34% 8 5.6 5 2.4 14.3% 8.91%
conv2 2 148K 36% 8 5.9 5 2.3 14.7% 9.31%
conv3 1 295K 53% 8 4.8 5 1.8 21.7% 11.15%
conv3 2 590K 24% 8 4.6 5 2.9 9.7% 5.67%
conv3 3 590K 42% 8 4.6 5 2.2 17.0% 8.96%
conv4 1 1M 32% 8 4.6 5 2.6 13.1% 7.29%
conv4 2 2M 27% 8 4.2 5 2.9 10.9% 5.93%
conv4 3 2M 34% 8 4.4 5 2.5 14.0% 7.47%
conv5 1 2M 35% 8 4.7 5 2.5 14.3% 8.00%
conv5 2 2M 29% 8 4.6 5 2.7 11.7% 6.52%
conv5 3 2M 36% 8 4.6 5 2.3 14.8% 7.79%
fc6 103M 4% 5 3.6 5 3.5 1.6% 1.10%
fc7 17M 4% 5 4 5 4.3 1.5% 1.25%
fc8 4M 23% 5 4 5 3.4 7.1% 5.24%
Total 138M 7.5%(13⇥) 6.4 4.1 5 3.1 3.2% (31⇥) 2.05% (49⇥)

is critical for real time image processing, where there is little reuse of these layers across images
(unlike batch processing). This is also critical for fast object detection algorithms where one CONV
pass is used by many FC passes. The reduced layers will fit in an on-chip SRAM and have modest
bandwidth requirements. Without the reduction, the bandwidth requirements are prohibitive.

6 DISCUSSIONS

6.1 PRUNING AND QUANTIZATION WORKING TOGETHER

Figure 6 shows the accuracy at different compression rates for pruning and quantization together
or individually. When working individually, as shown in the purple and yellow lines, accuracy of
pruned network begins to drop significantly when compressed below 8% of its original size; accuracy
of quantized network also begins to drop significantly when compressed below 8% of its original
size. But when combined, as shown in the red line, the network can be compressed to 3% of original
size with no loss of accuracy. On the far right side compared the result of SVD, which is inexpensive
but has a poor compression rate.

The three plots in Figure 7 show how accuracy drops with fewer bits per connection for CONV layers
(left), FC layers (middle) and all layers (right). Each plot reports both top-1 and top-5 accuracy.
Dashed lines only applied quantization but without pruning; solid lines did both quantization and
pruning. There is very little difference between the two. This shows that pruning works well with
quantization.

Quantization works well on pruned network because unpruned AlexNet has 60 million weights to
quantize, while pruned AlexNet has only 6.7 million weights to quantize. Given the same amount of
centroids, the latter has less error.

7

P = connection pruning (prune low weight connections) 
Q = quantize surviving weights (using shared weights) 
H = Huffman encode

Substantial savings due to combination of pruning, quantization, Huffman encoding

Published as a conference paper at ICLR 2016

Table 1: The compression pipeline can save 35⇥ to 49⇥ parameter storage with no loss of accuracy.

Network Top-1 Error Top-5 Error Parameters Compress
Rate

LeNet-300-100 Ref 1.64% - 1070 KB
LeNet-300-100 Compressed 1.58% - 27 KB 40⇥
LeNet-5 Ref 0.80% - 1720 KB
LeNet-5 Compressed 0.74% - 44 KB 39⇥
AlexNet Ref 42.78% 19.73% 240 MB
AlexNet Compressed 42.78% 19.70% 6.9 MB 35⇥
VGG-16 Ref 31.50% 11.32% 552 MB
VGG-16 Compressed 31.17% 10.91% 11.3 MB 49⇥

Table 2: Compression statistics for LeNet-300-100. P: pruning, Q:quantization, H:Huffman coding.

Layer #Weights Weights%
(P)

Weight
bits
(P+Q)

Weight
bits
(P+Q+H)

Index
bits
(P+Q)

Index
bits
(P+Q+H)

Compress
rate
(P+Q)

Compress
rate
(P+Q+H)

ip1 235K 8% 6 4.4 5 3.7 3.1% 2.32%
ip2 30K 9% 6 4.4 5 4.3 3.8% 3.04%
ip3 1K 26% 6 4.3 5 3.2 15.7% 12.70%
Total 266K 8%(12⇥) 6 5.1 5 3.7 3.1% (32⇥) 2.49% (40⇥)

Table 3: Compression statistics for LeNet-5. P: pruning, Q:quantization, H:Huffman coding.

Layer #Weights Weights%
(P)

Weight
bits
(P+Q)

Weight
bits
(P+Q+H)

Index
bits
(P+Q)

Index
bits
(P+Q+H)

Compress
rate
(P+Q)

Compress
rate
(P+Q+H)

conv1 0.5K 66% 8 7.2 5 1.5 78.5% 67.45%
conv2 25K 12% 8 7.2 5 3.9 6.0% 5.28%
ip1 400K 8% 5 4.5 5 4.5 2.7% 2.45%
ip2 5K 19% 5 5.2 5 3.7 6.9% 6.13%
Total 431K 8%(12⇥) 5.3 4.1 5 4.4 3.05% (33⇥) 2.55% (39⇥)

neurons each, which achieves 1.6% error rate on Mnist. LeNet-5 is a convolutional network that
has two convolutional layers and two fully connected layers, which achieves 0.8% error rate on
Mnist. Table 2 and table 3 show the statistics of the compression pipeline. The compression rate
includes the overhead of the codebook and sparse indexes. Most of the saving comes from pruning
and quantization (compressed 32⇥), while Huffman coding gives a marginal gain (compressed 40⇥)

5.2 ALEXNET ON IMAGENET

We further examine the performance of Deep Compression on the ImageNet ILSVRC-2012 dataset,
which has 1.2M training examples and 50k validation examples. We use the AlexNet Caffe model as
the reference model, which has 61 million parameters and achieved a top-1 accuracy of 57.2% and a
top-5 accuracy of 80.3%. Table 4 shows that AlexNet can be compressed to 2.88% of its original size
without impacting accuracy. There are 256 shared weights in each CONV layer, which are encoded
with 8 bits, and 32 shared weights in each FC layer, which are encoded with only 5 bits. The relative
sparse index is encoded with 4 bits. Huffman coding compressed additional 22%, resulting in 35⇥
compression in total.

5.3 VGG-16 ON IMAGENET

With promising results on AlexNet, we also looked at a larger, more recent network, VGG-16 (Si-
monyan & Zisserman, 2014), on the same ILSVRC-2012 dataset. VGG-16 has far more convolutional
layers but still only three fully-connected layers. Following a similar methodology, we aggressively
compressed both convolutional and fully-connected layers to realize a significant reduction in the
number of effective weights, shown in Table5.

The VGG16 network as a whole has been compressed by 49⇥. Weights in the CONV layers are
represented with 8 bits, and FC layers use 5 bits, which does not impact the accuracy. The two largest
fully-connected layers can each be pruned to less than 1.6% of their original size. This reduction

6

ImageNet Image Classification Performance
Top-1 Error Top-5 Error Model size

[Han ICLR16]
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Deep neural networks on GPUs
▪ Today, best performing DNN implementations target GPUs 

- High arithmetic intensity computations (computational characteristics similar 
to dense matrix-matrix multiplication) 

- Benefit from flop-rich architectures 

- Highly-optimized library of kernels exist for GPUs (cuDNN) 

- Most CPU-based implementations use basic matrix-multiplication-based 
formulation (good implementations could run faster!)

28

Facebook’s Big Sur
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Summary: Efficiently Evaluating DNNs
▪ Computational structure 

- Convlayers: high arithmetic intensity, significant portion of cost of evaluating a network 

- Similar data access patterns to dense-matrix multiplication (exploiting temporal reuse is key) 

- But straight reduction to matrix-matrix multiplication is often sub-optimal 

- Work-efficient techniques for convolutional layers (FFT-based, Wingrad convolutions) 

▪ Large numbers of parameters: significant interest in reducing size of networks for 
both training and evaluation 
- Pruning: remove least important network links 

- Quantization: low-precision parameter representations often suffice 

▪ Many ongoing studies of specialized hardware architectures for efficient evaluation 
- Future CPUs/GPUs, ASICs, FPGS, … 

- Specialization will be important to achieving “always on” applications

29
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Two Distinct Issues with Deep Networks
▪ Evaluation 

- often takes milliseconds  

▪ Training 
- often takes hours, days, weeks 

30
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“Training a network”
▪ Training a network is the process of learning the value of 

network parameters so that output of the network provides 
the desired result for a task 
- [Krizhevsky12] task = object classification 

- input 224 x 224 x 3 RGB image  

- output probability of 1000 ImageNet object classes: “dog”, “cat”, etc… 

- ~ 60M weights

31
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Professor classification network

32

  

Our model

● Max-pooling layers follow first, second, and 
fifth convolutional layers

● The number of neurons in each layer is given 
by 253440, 186624, 64896, 64896, 43264, 
4096, 4096, 1000

4

Input: 
image of a professor

Output: 
probability of label 

convlayer convlayer

convlayer convlayer convlayer

Easy: 
Mean: 
Boring: 
Nerdy:

?? 
?? 
?? 
??

Classifies professors as easy, mean, boring, or nerdy based on their appearance. 

Recall from last time: 
10’s-100’s of millions of parameters
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Professor classification network

33

  

Our model

● Max-pooling layers follow first, second, and 
fifth convolutional layers

● The number of neurons in each layer is given 
by 253440, 186624, 64896, 64896, 43264, 
4096, 4096, 1000

4

convlayer convlayer

convlayer convlayer convlayer

Easy: 
Mean: 
Boring: 
Nerdy:

0.26 
0.08 
0.14 
0.52
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Where did the parameters come from?

34
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Training data (ground truth answers)

35

NerdyNerdy

NerdyNerdy

[label omitted] [label omitted] [label omitted] Nerdy [label omitted] [label omitted] [label omitted]

[label omitted] [label omitted] [label omitted] [label omitted] [label omitted]

[label omitted] [label omitted] [label omitted] [label omitted] [label omitted]
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Professor classification network

36

  

Our model

● Max-pooling layers follow first, second, and 
fifth convolutional layers

● The number of neurons in each layer is given 
by 253440, 186624, 64896, 64896, 43264, 
4096, 4096, 1000

4

convlayer convlayer

convlayer convlayer convlayer

Easy: 
Mean: 
Boring: 
Nerdy:

0.26 
0.08 
0.14 
0.52

Easy: 
Mean: 
Boring: 
Nerdy:

0.0 
0.0 
0.0 
1.0

New image of Kayvon 
(not in training set)

Ground truth 
(what the answer should be)

Network output
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Error (loss)

37

Easy: 
Mean: 
Boring: 
Nerdy:

Easy: 
Mean: 
Boring: 
Nerdy:

0.0 
0.0 
0.0 
1.0

Ground truth: 
(what the answer should be) Network output: *

0.26 
0.08 
0.14 
0.52

* In practice a network using a softmax classifier outputs unnormalized, log probabilities (fj),  
   but I’m showing a probability distribution above for clarity 

Common example: softmax loss:
L = �log

 
efcP
j e

fj

!
Output of network 

for correct category

Output of network 
for all categories
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Training

38

Goal of training: learning good values of network parameters so that network outputs 
the correct classification result for any input image 

Idea: minimize loss for all the training examples (for which the correct answer is known) 

Intuition: if the network gets the answer correct for a wide range of training examples, 
then hopefully it has learned parameter values that yield the correct answer for future 
images as well.

L =
X

i

Li (total loss for entire training set is sum of losses Li for each training example xi)
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Intuition: gradient descent

39

Say you had a function f that contained a hidden parameters p1 and p2:

And for some input xi, your training data says the function should output 0.

But for the current values of p1 and p2, it currently outputs 10.

And say I also gave you expressions for the derivative of f with 
respect to p1 and p2 so you could compute their value at xi.

How might you adjust the values p1 and p2 to reduce the error for this training example?

f(xi, p1, p2) = 10

p1

p2

red = high values of f 
blue = low values

rf = [2,�5]
df

dp1
= 2

df

dp2
= �5

f(xi)
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Basic gradient descent

40

while	(loss	too	high):	

			for	each	item	x_i	in	training	set:	
						grad	+=	evaluate_loss_gradient(f,	loss_func,	params,	x_i)	
						
			params	+=	-grad	*	step_size;

Mini-batch stochastic gradient descent (mini-batch SGD): choose a random (small) 
subset of the training examples to compute gradient in each iteration of the while loop

How to compute df/dp for a complex neural network with millions of parameters?
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Derivatives using the chain rule

41

f(x, y, z) = (x+ y)z = az a = x+ yWhere:

df

da
= z

df

dx
=

df

da

da

dx
= z

da

dx
= 1

So, by the derivative chain rule:

x

y

z

+

*

3

4

5

7 (a)
5 

(df/da)

5 
(df/dx)

5 
(df/dy)

7 
(df/dz)

35

da

dy
= 1

1

Red = output of node
Blue = df/dnode
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Backpropagation

42

x

y
+ 10

10

10 dg

dx
= 1 ,

dg

dy
= 1g(x, y) = x+ y

df

dx
=

df

dg

dg

dx

x

y
max

10
0

10
15

12 g(x, y) = max(x, y)
dg

dx
=

1, if x > y
0, otherwise

x

y 10
10*15

10*12
15

12 * g(x, y) = xy
dg

dx
= y ,

dg

dy
= x

Red = output of node
Blue = df/dnode Recall:
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Backpropagating through single unit

43

f(x0, x1, x2, x3) = max

 
0,
X

i

xiwi + b

!Recall: behavior of unit:x0

*

max

w0

x1

*w1

x2

*w2

x3

*w3

+

+

+

b

+

0

dloss

dunit

10

y

y

y

y

y

y

y

y

y

yx3

let y =   
10, if upper input to max is > 0 
0,    otherwise

yx2

yx1

yx0

Observe: output of prior layer (xi’s) and output of 
this unit must be retained in order to compute 
weight gradients for this unit during backprop.

yw0

yw1

yw2

yw3
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Backpropagation: matrix form

44

2

6664

w0

w1
...
w8

3

7775

9

0			0			0			0			x00	x01	0			x10	x11

0			0			0			x00	x01	x02	x10	x11	x12

0			0			0			x01	x02	x03	x11	x12	x13

WxH

...

x00	x01	x02	x10	x11	x12	x20	x21	x22

...

X

w

*
X

w
y = Xw

dL

dy
(WxH)-element vector

9-element vector

dyj
dwi

= Xji

dL

dw
= XT dL

dy

dL

dw

Therefore:

dy

dw2

dL

dwi
=

X

j

dL

dyj

dyj
dwi

=
X

j

dL

dyj
Xji
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Back-propagation through the entire professor 
classification network

45

  

Our model

● Max-pooling layers follow first, second, and 
fifth convolutional layers

● The number of neurons in each layer is given 
by 253440, 186624, 64896, 64896, 43264, 
4096, 4096, 1000

4

loss

For each training example xi  in mini-batch: 
Perform forward evaluation to compute loss for xi 

Note: must retain all layer outputs + output gradients (needed to compute weight gradients 
during backpropagation) 

Compute gradient of loss w.r.t. final layer’s outputs 
Backpropagate gradient to compute gradient of loss w.r.t. all network parameters 
Accumulate gradients (over all images in batch) 

Update all parameter values: wi_new = wi_old - step_size * gradi
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VGG memory footprint

46

input: 224 x 224 RGB image 
conv: (3x3x3) x 64 
conv: (3x3x64) x 64 
maxpool 
conv: (3x3x64) x 128 
conv: (3x3x128) x 128 
maxpool 
conv: (3x3x128) x 256 
conv: (3x3x256) x 256 
conv: (3x3x256) x 256 
maxpool 
conv: (3x3x256) x 512 
conv: (3x3x512) x 512 
conv: (3x3x512) x 512 
maxpool 
conv: (3x3x512) x 512 
conv: (3x3x512) x 512 
conv: (3x3x512) x 512 
maxpool 
fully-connected 4096 
fully-connected 4096 
fully-connected 1000 
soft-max

Calculations assume 32-bit values (image batch size = 1)
weights mem:

output size 
(per image)

— 
6.5 KB 
144 KB 
— 
228 KB 
576 KB 
— 
1.1 MB 
2.3 MB 
2.3 MB 
— 
4.5 MB 
9 MB 
9 MB 
— 
9 MB 
9 MB 
9 MB 
— 
392 MB 
64 MB 
15.6 MB

224x224x3 
224x224x64 
224x224x64 
112x112x64 
112x112x128 
112x112x128 
56x56x128 
56x56x256 
56x56x256 
56x56x256 
28x28x256 
28x28x512 
28x28x512 
28x28x512 
14x14x512 
14x14x512 
14x14x512 
14x14x512 
7x7x512 
4096 
4096 
1000 
1000

150K 
12.3 MB 
12.3 MB 
3.1 MB 
6.2 MB 
6.2 MB 
1.5 MB 
3.1 MB 
3.1 MB 
3.1 MB 
766 KB 
1.5 MB 
1.5 MB 
1.5 MB 
383 KB 
383 KB 
383 KB 
383 KB 
98 KB 
16 KB 
16 KB 
4 KB 
4 KB

(mem)

inputs/outputs get 
multiplied by mini- 
batch size

Unlike forward evaluation: 
1. must store outputs and 

gradient of outputs 
2. cannot immediately free 

outputs once consumed 
by next level of network

Must also store per-
weight gradients 

Many implementations 
also store  gradient 
“momentum” as well 
(multiply by 3) 
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SGD workload

47

while	(loss	too	high):	

				
				
			for	each	item	x_i	in	mini-batch:	
						grad	+=	evaluate_loss_gradient(f,	loss_func,	params,	x_i)	
						
				
				
				
			params	+=	-grad	*	step_size;

At first glance, this loop is sequential (each step of 
“walking downhill” depends on previous)

Parallel across images

sum reduction
large computation with its own parallelism 
(but working set may not fit on single machine) 

trivial data-parallel over parameters
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Deep network training workload
▪ Huge computational expense 

- Must evaluate the network (forward and backward) for millions of training images 
- Must iterate for many iterations of gradient descent (100’s of thousands) 
- Training modern networks takes days 

▪ Large memory footprint 
- Must maintain network layer outputs from forward pass 
- Additional memory to store gradients for each parameter 
- Recall parameters for popular VGG-16 network require ~500 MB of memory (training 

requires GBs of memory for academic networks) 
- Scaling to larger networks requires partitioning network across nodes to keep network 

+ intermediates in memory 

▪ Dependencies /synchronization (not embarrassingly parallel) 
- Each parameter update step depends on previous 
- Many units contribute to same parameter gradients (fine-scale reduction) 
- Different images in mini batch contribute to same parameter gradients

48
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Data-parallel training (across images)

49

			for	each	item	x_i	in	mini-batch:	
						grad	+=	evaluate_loss_gradient(f,	loss_func,	params,	x_i)	
			params	+=	-grad	*	step_size;

Consider parallelization of the outer for loop across machines in a cluster

image  x0

parameter
gradients 
due to x0

Node 0 

copy of 
parameter 

values

image  x1

parameter
gradients 
due to x1

copy of 
parameter 

values

Node 1 

			partition	mini-batch	across	nodes	
			for	each	item	x_i	in	mini-batch	assigned	to	local	node:	
						//	just	like	single	node	training	
						grad	+=	evaluate_loss_gradient(f,	loss_func,	params,	x_i)	
			barrier();	
			sum	reduce	gradients,	communicate	results	to	all	nodes	
			barrier();	
			update	copy	of	parameter	values



 CMU 15-418/618, Fall 2019

Challenges of computing at cluster scale
▪ Slow communication between nodes 

- Clusters do not feature high-performance interconnects typical of 
supercomputers 

▪ Nodes with different performance (even if machines are the same) 
- Workload imbalance at barriers (sync points between nodes)

50

Modern solution: exploit characteristics of SGD using 
asynchronous execution!
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Parameter server design

51

Worker 
Node 0 

Parameter 
Server

parameter 
values

Pool of worker nodes

Worker 
Node 1 

Worker 
Node 2 

Worker 
Node 3 

Parameter Server [Li OSDI14] 
Google’s DistBelief [Dean NIPS12] 
Microsoft’s Project Adam [Chilimbi OSDI14] 
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Training data partitioned among workers

52

Worker 
Node 0 

Parameter 
Server

Pool of worker nodes

x0 - x1000

x1000 - x2000

Worker 
Node 1 

x2000-3000

x3000-4000

training data training data

training data training data

Worker 
Node 2 

Worker 
Node 3 

parameter 
values (v0)
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Copy of parameters sent to workers

53

Worker 
Node 0 

Parameter 
Server

Pool of worker nodes

Worker 
Node 1 

training data training data

training data training data

local copy of 
parameters (v0)

Worker 
Node 2 

Worker 
Node 3 

parameter 
values (v0)local copy of 

parameters (v0)

local copy of 
parameters (v0)

local copy of 
parameters (v0)

params v0

params v0

params v0

params v0
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Workers independently compute local “subgradients"

54

Worker 
Node 0 

Parameter 
Server

Pool of worker nodes

Worker 
Node 1 

training data training data

training data training data

Worker 
Node 2 

Worker 
Node 3 

local 
subgradients

parameter 
values (v0)

local 
subgradients

local 
subgradients

local 
subgradients

local copy of 
parameters (v0)

local copy of 
parameters (v0)

local copy of 
parameters (v0)

local copy of 
parameters (v0)
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Worker sends subgradient to parameter server

55

Worker 
Node 0 

Parameter 
Server

parameter 
values (v0)

Pool of worker nodes

Worker 
Node 1 

training data training data

training data training data

Worker 
Node 2 

Worker 
Node 3 

subgradient

local 
subgradients

local 
subgradients

local 
subgradients

local 
subgradients

local copy of 
parameters (v0)

local copy of 
parameters (v0)

local copy of 
parameters (v0)

local copy of 
parameters (v0)
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Server updates global parameter values based on 
subgradient

56

Worker 
Node 0 

Parameter 
Server

parameter 
values (v1)

Worker 
Node 1 

training data training data

training data training data

Worker 
Node 2 

Worker 
Node 3 

local 
subgradients

local 
subgradients

local 
subgradients

local 
subgradients

local copy of 
parameters (v0)

local copy of 
parameters (v0)

local copy of 
parameters (v0)

local copy of 
parameters (v0)

params	+=	-subgrad	*	step_size;
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Updated parameters sent to worker 
Worker proceeds with another gradient computation step

57

Worker 
Node 0 

Parameter 
Server

parameter 
values (v1)

Worker 
Node 1 

training data training data

training data training data

Worker 
Node 2 

Worker 
Node 3 

local 
subgradients

local 
subgradients

local 
subgradients

local 
subgradients

local copy of 
parameters (v0)

local copy of 
parameters (v1)

local copy of 
parameters (v0)

local copy of 
parameters (v0)

Note:  

Node 1 is operating on different set of parameter 
values than other nodes 

Those parameter values were computed without 
gradient information from the other nodes

params v1
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Updated parameters sent to worker (again)

58

Worker 
Node 0 

Parameter 
Server

parameter 
values (v1)

Worker 
Node 1 

training data training data

training data training data

Worker 
Node 2 

Worker 
Node 3 

local 
subgradients

local 
subgradients

local 
subgradients

local 
subgradients

local copy of 
parameters (v0)

local copy of 
parameters (v1)

local copy of 
parameters (v0)

local copy of 
parameters (v0)

subgradient
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Worker continues with updated parameters

59

Worker 
Node 0 

Parameter 
Server

parameter 
values (v2)

Worker 
Node 1 

training data training data

training data training data

Worker 
Node 2 

Worker 
Node 3 

local 
subgradients

local 
subgradients

local 
subgradients

local 
subgradients

local copy of 
parameters (v0)

local copy of 
parameters (v1)

local copy of 
parameters (v0)

local copy of 
parameters (v2)

params v2
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Summary: asynchronous parameter update
▪ Idea: avoid global synchronization on all parameter updates 

between each SGD iteration 
- Design reflects realities of cluster computing: 

- Slow interconnects 
- Unpredictable machine performance 

▪ Solution: asynchronous (and partial) subgradient updates 

▪ Will impact convergence of SGD 
- Node N working on iteration i may not have parameter values that result the 

results of the i-1 prior SGD iterations

60
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Bottleneck?

61

Worker 
Node 0 

Parameter 
Server

parameter 
values (v2)

Worker 
Node 1 

training data training data

training data training data

Worker 
Node 2 

Worker 
Node 3 

local 
subgradients

local 
subgradients

local 
subgradients

local 
subgradients

local copy of 
parameters (v0)

local copy of 
parameters (v1)

local copy of 
parameters (v0)

local copy of 
parameters (v2)

What if there is heavy contention for parameter server?



 CMU 15-418/618, Fall 2019

Shard the parameter server

62

Worker 
Node 0 

Parameter 
Server 0

parameter 
values 

(chunk 0)

Worker 
Node 1 

training data training data

training data training data

Worker 
Node 2 

Worker 
Node 3 

local 
subgradients

local 
subgradients

local 
subgradients

local 
subgradients

local copy of 
parameters (v0)

local copy of 
parameters (v1)

local copy of 
parameters (v0)

local copy of 
parameters (v2)

Partition parameters across servers 
Worker sends chunk of subgradients to owning parameter server

Parameter 
Server 1

parameter 
values 

(chunk 1)

subgradient 
(chunk 0)

subgradient 
(chunk 1)

Reduces data transmission load on individual servers 
(less important: also reduces cost of parameter update)
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What if model parameters do not fit on one worker?

63

Worker 
Node 0 

Parameter 
Server 0

parameter 
values 

(chunk 0)

Worker 
Node 1 

training data training data

training data training data

Worker 
Node 2 

Worker 
Node 3 

local 
subgradients

local 
subgradients

local 
subgradients

local 
subgradients

local copy of 
parameters (v0)

local copy of 
parameters (v1)

local copy of 
parameters (v0)

local copy of 
parameters (v2)

Parameter 
Server 1

parameter 
values 

(chunk 1)

Recall high footprint of training large networks 
(particularly with large mini-batch sizes) 
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Model parallelism

64

  

Our model

● Max-pooling layers follow first, second, and 
fifth convolutional layers

● The number of neurons in each layer is given 
by 253440, 186624, 64896, 64896, 43264, 
4096, 4096, 1000

4

Worker 
Node 0 

Worker 
Node 1 

Partition network parameters across nodes 
(spatial partitioning to reduce communication) 

Reduce internode communication through network design:  
- Use small spatial convolutions (1x1 convolutions)  
- Reduce/shrink fully-connected layers  

Convolutional layers: only 
need to community outputs 

near spatial partition 

Fully-connected layers: 
all data owned by a node 
must by communicated to 

other nodes
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Training data-parallel and model-parallel execution
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Worker 
Node 0 

Parameter 
Server 0

parameter 
values 

(chunk 0)

Worker 
Node 1 

training data training data

training data training data

Worker 
Node 2 

Worker 
Node 3 

local 
subgradients 

chunk 1

local 
subgradients 

chunk 0

local copy of 
parameters (v1): 

chunk 0

local copy of 
parameters (v1): 

chunk 1

Parameter 
Server 1

parameter 
values 

(chunk 1)

Working on subgradient computation 
for a single copy of the model

local copy of 
parameters (v0): 

chunk 0

local copy of 
parameters (v0): 

chunk 1
local 

subgradients 
chunk 1

local 
subgradients 

chunk 0

Working on subgradient computation 
for a single copy of the model

Find-grained 
communication of 

layer outputs, 
subgradients, etc. 

Find-grained 
communication of 

layer outputs, 
subgradients, etc. 
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Using supercomputers for training?
▪ Fast interconnects critical for model-parallel training 

- Fine-grained communication of outputs and gradients 

▪ Fast interconnect diminishes need for async training algorithms 
- Avoid randomness in training due to computation schedule (there remains 

randomness due to SGD algorithm)

66

OakRidge Titan Supercomputer NVIDIA DGX-1: 8 Pascal GPUs connected 
via high speed NV-Link interconnect
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Parallelizing mini-batch on one machine

67

			for	each	item	x_i	in	mini-batch:	
						grad	+=	evaluate_loss_gradient(f,	loss_func,	params,	x_i)	
			params	+=	-grad	*	step_size;

Consider parallelization of the outer for loop across cores

image  x0

parameter
gradients 
due to x0

Core 0

image  x1

parameter
gradients 
due to x1

Core 1

Good: completely independent computations (until gradient reduction)
Bad: complete duplication of parameter gradient state (100’s MB per core)

final 
parameter
gradients

parameter 
values
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Asynchronous update on one node
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			for	each	item	x_i	in	mini-batch:	
						grad	+=	evaluate_loss_gradient(f,	loss_func,	params,	x_i)	
			params	+=	-grad	*	step_size;

Cores update shared set of gradients.  
Skip taking locks / synchronizing across cores: perform “approximate reduction”

image  x0

Core 0

image  x1

Core 1

parameter
gradients

parameter 
values

Project Adam [Chilimbi OSDI14] 
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Summary: training large networks in parallel

▪ Most systems rely on asynchronous update to efficiently used 
clusters of commodity machines 
- Modification of SGD algorithm to meet constraints of modern parallel systems 
- Open question: effects on convergence are problem dependent and not 

particularly well understood 
- Tighter integration / faster interconnects may provide alternative to these 

methods (facilitate tightly orchestrated solutions much like supercomputing 
applications) 

▪ Open question: how big of networks are needed? 
- >90% of connections could be removed without significant impact on quality of 

network 
- High-performance training of deep networks is an interesting example of 

constant iteration of algorithm design and parallelization strategy 
(a key theme of this course! recall the original grid solver example!)
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