
CS 418, Spring 2011

Assignment 3: Parallel Branch-and-Bound
for the Wandering Salesman Problem, Using the Message Passing Model

Assigned: Tuesday, Feb. 22
Due: Thursday, Mar. 3, noon

This assignment deals with parallel programming using the message passing model. The aim of this
assignment is to understand the trade-offs involved in this model, and compare them with what we have
learned about the shared memory model for writing parallel programs.

1 Policy and Logistics

Please work in groups of 2 people to solve the problems for this assignment. (Hand in one assignment per
group.) There will be both electronic and hard copy hand-ins, as described below. Any clarifications and
revisions to the assignment will be posted on the “Assignments and exam information” web page in the
class WWW directory. In the following, HOMEDIR refers to the directory:

/afs/cs.cmu.edu/academic/class/15418-s11/public

and ASSTDIR refers to the subdirectory HOMEDIR/asst/asst3.

2 Written Assignments

Please answer problem 2.7 (parts c and f only) in the textbook.

3 Programming Assignment: WSP with Message Passing

Now that you have solved the Wandering Salesman Problem using the shared memory programming model,
solve the same problem using the message-passing programming model. In particular, write your program
using the Message Passing Interface (MPI). (You can also use MPICH if you prefer, which is basically the
same thing.)

NOTE: The salesman can start at any city. It is not necessary that he has to start at city 1.

Your report should include the following items:

1. A brief (roughly one or two pages) description of how your program works. Describe the general
program flow and all significant data structures. Compare and contrast with the design you used for
the shared-memory version.

2. The solution to the problem given in ASSTDIR/input/distances. This file contains a 17 city problem.
(For debugging purposes, you may want to use some of the smaller input files included in the same
directory. The city locations corresponding the distance files are provided in the ‘city’ files.)

3. Execution time and speedup (both total and computation) for 1, 2, 4, 8, 16, 24, and 32 processors
on both pople and blacklight. (If you can get even more processors, that is great.)

1



4. Discuss the results you expected and explain the reasons for any non-ideal behavior you observe. In
particular, if you don’t get perfect speedup, explain why.

5. Compare the performance of your message-passing version of WSP on blacklight with your shared-
memory version of the application on the same machine. (Include graphs to illustrate the difference
in performance.) Discuss any differences in performance with possible reasons for such a behavior.

6. Compare your results on the two machines. If you see different behaviors on pople versus blacklight,
please discuss what you think is the likely cause of the different behaviors. Can you achieve good
performance on both machines using the same source code?

If the execution time for your program takes more than a few minutes, double-check your program and
algorithm. Make sure your programs run on a uniprocessor before trying to run them in parallel. Also,
debug your programs using smaller numbers of cities (perhaps HOMEDIR/asst/asst3/input/dist4) and
small numbers of processors before trying larger runs.

4 Using MPI

A small introduction and tutorial is being handed out with this assignment; it can also be obtained from
ASSTDIR/mpi tutorial.pdf. This tutorial gives only a very rudimentary overview to all the things that
MPI allows you to do. To learn more about MPI, please consult one of the following websites:

http://www.citutor.org
This NCSA online course entitled “Introduction to MPI” is free. Register online at the above URL,
with any easy-to-remember login and password. Chapters 2-8 cover everything you will need for this
assignment. You can log into your account any number of times, so the course material can also be
used as an online reference.

https://computing.llnl.gov/tutorials/mpi/
Another tutorial on MPI. (If you take the NCSA course, this one is optional.)

5 Hand-in

Electronic submission:

Your solution to the WSP. Do this by naming your file last-wsp.c, where last is the last name of one of
your group members, and copying this file to the directory

/afs/cs.cmu.edu/academic/class/15418-s11/public/asst/asst3/handin

Include as comments near the beginning of this file the identities of all members of your group. Also
remember to add comments to your code.

Hard-copy submission:

1. Answers to the questions in Section 2.

2. Answers to the questions listed in Section 3.

3. A listing of your code.

2


