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Topics
• Hierarchies
• Directory Protocols

Hierarchical Cache Coherence

P P P

Hierarchies arise in two ways:

C1
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1. Processors have multiple levels of caches

• single cache hierarchy
2. Building a large-scale multiprocessor via a hierarchy of buses

• multi-cache hierarchy

Single Cache Hierarchies
P

L1

Inclusion Property: Everything in L1 cache is also present 
in L2 cache.
• L2 must also be owner of block if L1 has the block dirty
• Snoop of L2 takes responsibility for recalling or invalidating data 

L2
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Snoop of L2 takes responsibility for recalling or invalidating data 
due to remote requests

• It often helps if the block size in L1 is smaller or the same size 
as that in L2 cache

Hierarchical Snoopy Cache Coherence
• Simplest way to build large-scale cache-coherent MPs is 
to use a hierarchy of buses and use snoopy coherence at 
each level.

• Two ways to build such a machine:
(a) Main memory centralized at the global (B2) bus
(b) Main memory distributed among the clusters

P P

L1 L1

P P

L1 L1

P P

L1 L1
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L1 L1
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Hierarchies with Global Memory

P P

L1 L1

P P

L1 L1

• First-level caches:
• Highest performance SRAM caches.  
• B1 follows standard snoopy protocol

L2
B1

L2
B1

B2

Main Memory ( Mp)
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• Second-level caches:

• Much larger than L1 caches (set assoc).  Must maintain inclusion.
• L2 cache acts as filter for B1-bus and L1-caches.
• L2 cache can be DRAM based, since fewer references get to it.

Hierarchies w/ Global Mem (Cont)

Advantages:
• Misses to main memory just require single traversal to the root of 

th  hi hthe hierarchy.
• Placement of shared data is not an issue.

Disadvantages:
• Misses to local data structures (e.g., stack) also have to traverse 

the hierarchy, resulting in higher traffic and latency.
• Memory at the global bus must be highly interleaved.  Otherwise 

bandwidth to it will not scale.
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Cluster Based Hierarchies
P P

L1 L1

P P

L1 L1

Key idea: Main memory is distributed among clusters.
• reduces global bus traffic

– local data and suitably placed shared data

L2
B1

Memory

B1

L2
Memory

B2
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• reduces latency

– less contention and local accesses are faster
• example machine: Encore Gigamax

Observation:
• L2 cache can be replaced by a tag-only router-coherence switch.

Encore Gigamax

P

C

P

C

P

C

P

C

Motorola 88K processors
8-way interleaved
memory

C C

UCC UIC

Fiber-optic link

C C

UCC UIC

Local
Nano Bus

(64-bit data, 32-bit address,
split-transaction, 80ns cycles)

Tag RAM only
for local data
cached remotely

Tag and Data RAMS
for remote data
cached locally

(Bit serial,
4 bytes every 80ns)

(Two 16MB banks
4-way associative)
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UIC UIC

Global Nano Bus

Tag RAM only
for remote data
cached locally

(64-bit data, 32-bit address,
split-transaction, 80ns cycles)
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Cache Coherence in Gigamax
• Write to local-bus is passed to global-bus if:

• data allocated in remote Mp
ll d l l      h• allocated local but present in some remote cache

• Read to local-bus passed to global-bus if:
• allocated in remote Mp, and not in cluster cache
• allocated local but dirty in a remote cache

• Write on global-bus passed to local-bus if:
• allocated in to local Mp
• allocated remote  but  dirty in local cache
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• allocated remote, but  dirty in local cache

• ...

• Many race conditions possible
• e.g., write-back going out as request coming in

Alternative: Hierarchy of Rings

• Hierarchical ring network, not bus
• examples: 

– U. of Toronto: Hector, NUMAchine
– Kendall Square Research (KSR)

• Snoop on requests passing by on ring
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• Point-to-point structure of ring implies:
• potentially higher bandwidth than buses
• higher latency

• May become interesting again in chip multiprocessors

Hierarchies: Summary

Advantages:
C t ll  i l t  b ild • Conceptually simple to build 
– apply snooping recursively

• Can get merging and combining of requests in hardware

Disadvantages:
• Physical hierarchies do not provide enough bisection bandwidth

– the root becomes a bottleneck (e.g., 2-d, 3-d grid problems)
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m ( g , , g p m )
– patch solution: multiple buses/rings at higher levels

• Latencies often larger than in direct networks

Directory-Based Cache Coherence
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Motivation for Directory Schemes

• Snoopy schemes do not scale because they rely upon 
broadcast

• Directory-based schemes allow scaling:
• they avoid broadcasts by:

– keeping track of all processors (PEs) caching a  memory block, 
– and then using point-to-point messages to maintain coherence

• they will work on any scalable point-to-point interconnect
– i e  do not rely upon buses or other broadcast-based interconnects
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i.e. do not rely upon buses or other broadcast based interconnects

Basic Scheme (Censier & Feautrier)

• Assume P processors
• With each cache-block in memory:

• P presence bits

P P

Cache Cache P presence bits
• 1 dirty bit

• With each cache-block in cache:
• 1 valid bit
• 1 dirty (owner) bit

• Read from main memory by PE-i:
– if dirty-bit is OFF then { read from main memory; turn p[i] ON; }

• ••Memory Directory

presence bits dirty bit

Interconnection Network
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– if dirty-bit is ON then { recall line from dirty PE (cache state to 

shared); update memory; turn dirty-bit OFF; turn p[i] ON; supply 
recalled data to PE-i; }

• Write to main memory by PE-i:
– if dirty-bit OFF then { supply data to PE-i; send invalidations to all 

PEs caching that block; turn dirty-bit ON; turn P[i] ON; ... }
– ...

Directory Protocol Examples
(a) Read miss to a block in dirty state

P R d t
1.

Requestor

P
RdEx request
to directory

1.Requestor

(b) Write miss to a block with two sharers

A M/D

C

P

A M/D

C

P

Read request
to directory

Reply with
owner identity

Read req.
to owner

Data
Reply

Revision message
to directory

2.

3.

4a.

4b.

Directory node
for block

P

A M/D

C
P

A M/D

C

P

to directory

Reply with
sharers identity

Inval. req.
to sharer

2.

P

Inval. req.
to sharer

Inval. ack Inval. ack

3a. 3b.

4a. 4b.

Directory node
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A M/D

C

Node with
dirty copy

A M/D

C

A M/D

C

Sharer Sharer

Many alternative for organizing directory information

Scaling with Number of Processors

• Scaling of memory and directory bandwidth provided
• Centralized directory is BW bottleneck, just like centralized memoryy , j y
• How to maintain directory information in distributed way?

• Scaling of performance characteristics
• traffic: # of network transactions each time protocol is invoked
• latency: # of network transactions in critical path each time

• Scaling of directory storage requirements
• Number of presence bits needed grows as the number of processors
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• How directory is organized affects all these, performance 
at a target scale, as well as coherence management issues



Page 5

Insights into Directories

Inherent program characteristics:
• determine whether directories provide big advantages over broadcast• determine whether directories provide big advantages over broadcast
• provide insights into how to organize and store directory information

Characteristics that matter:
– frequency of write misses
– how many sharers on a write miss
– how these scale
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how these scale

Cache Invalidation Patterns
LU Invalidation Patterns
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Cache Invalidation Patterns
Barnes-Hut Invalidation Patterns
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Sharing Patterns Summary
Generally, only a few sharers at a write, scales slowly with P:

• Code and read-only objects (e.g, scene data in Raytrace)
– no problems as rarely writtenno problems as rarely wr tten

• Migratory objects (e.g., cost array cells in LocusRoute)
– even as # of PEs scale, only 1-2 invalidations

• Mostly-read objects (e.g., root of tree in Barnes) 
– invalidations are large but infrequent, so little impact on performance

• Frequently read/written objects (e.g., task queues)
– invalidations usually remain small, though frequent

• Synchronization objects
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Synchronization objects
– low-contention locks result in small invalidations
– high-contention locks need special support (SW trees, queueing locks)

Implies directories very useful in containing traffic
• if organized properly, traffic and latency shouldn’t scale too badly

Suggests techniques to reduce storage overhead
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Organizing Directories

Directory Schemes

Centralized Distributed

HierarchicalFlatHow to find source of
directory information
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Let’s see how they work and their scaling characteristics with P

Memory-based Cache-based
How to locate copies

How to Find Directory Information

centralized memory and directory - easy: go to it
• but not scalable

distributed memory and directory
• flat schemes

– directory distributed with memory: at the home
– location based on address (hashing): 

»message sent directly to home
• hierarchical schemes

– directory organized as a hierarchical data structure
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– leaves are processing nodes, internal nodes have only directory state
– node’s directory entry for a block says whether each subtree caches the 

block
– to find directory info, send “search” message up to parent

»routes itself through directory lookups
– like hiearchical snooping, but point-to-point messages between children 

and parents

How Hierarchical Directories Work

processing nodes

(Tracks which of its children

level-1 directory

level-2 directory

(
processing nodes have a copy
of the memory block. Also tracks
which local memory blocks are
cached outside this subtree.
Inclusion is maintained between
processor caches and directory.)(Tracks which of its children

level-1 directories have a copy
of the memory block. Also tracks
which local memory blocks are
cached outside this subtree.
Inclusion is maintained between
level-1 directories and level-2 directory.)
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Directory is a hierarchical data structure
• leaves are processing nodes, internal nodes just directory
• logical hierarchy, not necessarily physical 

– can be embedded in general network

y )

How Is Location of Copies Stored?
Hierarchical Schemes:

• through the hierarchy
• each directory has presence bits for its children (subtrees)  & dirty biteach directory has presence bits for its children (subtrees), & dirty bit

Flat Schemes:
• varies a lot
• different storage overheads and performance characteristics
• Memory-based schemes

– info about copies stored all at the home with the memory block
– Dash, Alewife , SGI Origin, Flash
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• Cache-based schemes
– info about copies distributed among copies themselves

»each copy points to next
– Scalable Coherent Interface (SCI: IEEE standard)
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Flat, Memory-based Schemes
All info about copies co-located with the block itself the 

home
• works just like centralized scheme  except physically distributed• works just like centralized scheme, except physically distributed

Scaling of performance characteristics:
• traffic on a write: proportional to number of sharers
• latency of a write: can issue invalidations to sharers in parallel
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How Does Storage Overhead Scale?

Simplest representation: full bit vector
• i.e. one presence bit per node

Directory storage overhead:
P = # of processors (or nodes) 
M = # of blocks in memory
• overhead is proportional to P*M

D   l  ll i h P

P

M
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Does not scale well with P:
• 64-byte line implies:

– 64 nodes: 12.7% overhead
– 256 nodes: 50% overhead
– 1024 nodes: 200% overhead

Reducing Storage Overhead

• Full Bit Vector Schemes Revisited

• Limited Pointer Schemes
• reduce “width” of directory 

– i.e. the “P” term

• Sparse Directories
• reduce “height” of directory 
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– i.e. the “M” term

The Full Bit Vector Scheme
Invalidation traffic is best

• because sharing information is accurate

Optimizations for full bit vector schemes:
• increase cache block size:

– reduces storage overhead proportionally
– problems with this approach?

• use multiprocessor nodes:
– bit per multiprocessor node, not per processor
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p p p p
– still scales as P*M, but not a problem for all but very large machines

»e.g., 256-procs, 4 per cluster, 128B line:  6.25% overhead
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Limited Pointer Schemes

Observation:
• Since data is expected to be in only a few caches at any one 

ti   li it d # f i t   di t  t  h ld ffitime, a limited # of pointers per directory entry should suffice

Overflow Strategy:
• What to do when # of sharers exceeds # of pointers?

Many different schemes based on differing overflow 
strategies

CS 418– 29 –

strategies

Overflow Schemes for Limited Pointers

Broadcast (DiriB)
• broadcast bit turned on upon overflow

P0 P1 P2 P3

0

Overflow bit 2 Pointers

• when is this bad?
No-broadcast (DiriNB)

• on overflow, new sharer replaces one of the old 
ones (invalidated)

• when is this bad?
Coarse Vector (DiriCV)

• change representation to a coarse vector: 1

Overflow bit 8-bit coarse vector

(a) No overflow

P0 P1 P2 P3

P4 P5 P6 P7

P8 P9 P10 P11

P12 P13 P14 P15
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– 1 bit per k nodes
• on a write, invalidate all nodes that a bit 

corresponds to

P0 P1 P2 P3

P4 P5 P6 P7

P8 P9 P10 P11

P12 P13 P14 P15

(a) Overflow

Overflow Schemes (Continued)

Software (DiriSW)
• trap to software, use any number of pointers (no precision loss)

MIT Al if : 5 t s  l s  bit f  l l d– MIT Alewife: 5 ptrs, plus one bit for local node
• but extra cost of interrupt processing on software

– processor overhead and occupancy
– latency:

»40 to 425 cycles for remote read in Alewife
»84 cycles for 5 inval, 707 for 6. 

Dynamic Pointers (Dir DP)
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Dynamic Pointers (DiriDP)
• use pointers from a hardware free list in portion of memory
• manipulation done by hardware assist, not software
• e.g., Stanford FLASH

Some Data
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• 64 procs, 4 pointers, normalized to full-bit-vector
• Coarse vector quite robust

General conclusions:
• full bit vector simple and good for moderate-scale
• several schemes should be fine for large-scale, no clear winner yet

LocusRoute Cholesky Barnes-Hut
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Reducing Height: Sparse Directories
Reduce M term in P*M
Observation: total number of cache entries << total amount 
of memoryof memory.
• most directory entries are idle most of the time
• 1MB cache and 64MB per node => 98.5% of entries are idle

Organize directory as a cache
• but no need for backup store

– send invalidations to all sharers when entry replaced
• one entry per “line”; no spatial locality

diff    (f    b  fil d)
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• different access patterns (from many procs, but filtered)
• allows use of SRAM, can be in critical path
• needs high associativity, and should be large enough

Can trade off width and height

Flat, Cache-based Schemes
• How they work:

• home only holds pointer to rest of directory info
• distributed linked list of copies  weaves through cachesdistributed linked list of copies, weaves through caches

• cache tag has pointer, points to next cache with a copy
• on read: add yourself to head of the list (communication needed)
• on write: propagate chain of invalidations down the list

Main Memory
(Home)

Node 0 Node 1 Node 2
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P

Cache

P

Cache

P

Cache

Node 0 Node 1 Node 2

• Scalable Coherent Interface (SCI) IEEE Standard
• doubly linked list

Scaling Properties (Cache-based)
Traffic on write: proportional to number of sharers
Latency on write: proportional to number of sharers!

• don’t know identity of next sharer until reach current one
• also assist processing at each node along the way
• even reads involve more than one other assist: 

– home and first sharer on list
Storage overhead: quite good scaling along both axes

• Only one head pointer per memory block
– rest is all proportional to cache size
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p p
»but that information is stored in SRAM!

Other properties:
• good: mature, IEEE Standard, fairness
• bad: complex

Summary of Directory Organizations

Flat Schemes:
• Issue (a): finding source of directory data:

 t  h  b d  dd• go to home, based on address
• Issue (b): finding out where the copies are

• memory-based: all info is in directory at home
• cache-based: home has pointer to first element of distributed linked list

• Issue (c): communicating with those copies
• memory-based: point-to-point messages (perhaps coarser on overflow)

– can be multicast or overlapped
• cache-based: part of point-to-point linked list traversal to find them

i li d
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– serialized

Hierarchical Schemes:
• all three issues through sending messages up and down tree
• no single explicit list of sharers
• only direct communication is between parents and children
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Summary of Directory Approaches

Directories offer scalable coherence on general networks
 d f  b d  di• no need for broadcast media

Many possibilities for organizing directory and managing 
protocols

Hierarchical directories not used much
• high latency, many network transactions, and BW bottleneck at root

Both memory-based and cache-based flat schemes are alive
• for memory-based  full bit vector suffices for moderate scale
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for memory based, full bit vector suffices for moderate scale
– measured in nodes visible to directory protocol, not processors


