Cache Coherence for
Large-Scale Machines

Todd C. Mowry
CS 418
February 10 & 15, 2011

Topics
+ Hierarchies
+ Directory Protocols

Single Cache Hierarchies

Inclusion Property: Everything in L1 cache is also present
in L2 cache.
+ L2 must also be owner of block if L1 has the block dirty
+ Snoop of L2 takes responsibility for recalling or invalidating data
due to remote requests
+ It often helps if the block size in L1 is smaller or the same size
as that in L2 cache

-3- CS 418

Page 1

Hierarchical Cache Coherence

=

(@) (b)

Hierarchies arise in two ways:
1. Processors have multiple levels of caches
single cache hierarchy
2. Building a large-scale multiprocessor via a hierarchy of buses
multi-cache hierarchy

-2- €S 418

Hierarchical Snoopy Cache Coherence

- Simplest way to build large-scale cache-coherent MPs is
to use a hierarchy of buses and use snoopy coherence at
each level.

+ Two ways to build such a machine:

(a) Main memory centralized at the global (B2) bus
(b) Main memory distributed among the clusters

Q O
[ERpy

(@) (b)

-4- CS 418

Hierarchies with Global Memory

28 &8

- First-level caches:

+ Highest performance SRAM caches.
+ B1 follows standard snoopy protocol
- Second-level caches:
+ Much larger than L1 caches (set assoc). Must maintain inclusion.
+ L2 cache acts as filter for B1-bus and L1-caches.
+ L2 cache can be DRAM based, since fewer references get to it.

-5- CS 418

Cluster Based Hierarchies

L2
Memory

L2
Memory
B2

Key idea: Main memory is distributed among clusters.
+ reduces global bus traffic
- local data and suitably placed shared data
* reduces latency
- less contention and local accesses are faster
+ example machine: Encore Gigamax

Observation:

+ L2 cache can be replaced by a tag-only router-coherence switch.

-7- CS 418

Page 2

Hierarchies w/ Global Mem (Cont)

Advantages:

+ Misses to main memory just require single traversal to the root of
the hierarchy.

 Placement of shared data is not an issue.

Disadvantages:
+ Misses to local data structures (e.g., stack) also have to traverse
the hierarchy, resulting in higher traffic and latency.

+ Memory at the global bus must be highly interleaved. Otherwise
bandwidth to it will not scale.

-6- CS 418

Encore Gigamax

Motorola 88K processors

8-way interleaved
memory

Local (64-bit data, 32-bit address,
Nano Bus split-transaction, 80ns cycles)

cached locally cached remotely
Tag RAM only

Tag and Data RAMS Tag RAM only
(Two 16MB banks
for remote data | UIC eee| UIC

for remote data | UCC +——{ UIC |for local data ucc — ulIC
4-way associative)
Fiber-optic link'
(Bit serial,
4 bytes every 80ns)
cached locally

Global Nano Bus (54 bit data, 32-bit address,
split-transaction, 80ns cycles)

-8- CS 418

Cache Coherence in Gigamax

+ Write to local-bus is passed to global-bus if:
data allocated in remote Mp
allocated local but present in some remote cache

+ Read to local-bus passed to global-bus if:
allocated in remote Mp, and not in cluster cache
allocated local but dirty in a remote cache

+ Worite on global-bus passed to local-bus if:
allocated in to local Mp
allocated remote, but dirty in local cache

* Many race conditions possible
e.g., write-back going out as request coming in

-9- Cs 418

Hierarchies: Summary

Advantages:
+ Conceptually simple to build

- apply snooping recursively
+ Can get merging and combining of requests in hardware

Disadvantages:

+ Physical hierarchies do not provide enough bisection bandwidth
- the root becomes a bottleneck (e.g., 2-d, 3-d grid problems)
- patch solution: multiple buses/rings at higher levels

+ Latencies often larger than in direct networks

-11- CS 418

Page 3

Alternative: Hierarchy of Rings

.

+ examples:
- U. of Toronto: Hector, NUMAchine
- Kendall Square Research (KSR)

Snoop on requests passing by on ring -

Point-to-point structure of ring implies:
+ potentially higher bandwidth than buses
+ higher latency

May become interesting again in chip multiprocessors

-10- CS 418

Directory-Based Cache Coherence

Motivation for Directory Schemes

+ Snoopy schemes do not scale because they rely upon
broadcast

+ Directory-based schemes allow scaling:
+ they avoid broadcasts by:
- keeping track of all processors (PEs) caching a memory block,
- and then using point-to-point messages to maintain coherence
+ they will work on any scalable point-to-point interconnect
- i.e. do not rely upon buses or other broadcast-based interconnects

CS 418

-13-

Directory Protocol Examples

(a) Read miss to a block in dirty state

RAEX request
to director

Directory node
for block

Data
Reply

4b.

Revision message
to directon

Sharer

Node with Sharer

dirty copy

Many alternative for organizing directory information

CS 418

(b) Write miss to a block with two sharers

-15-

Basic Scheme (Censier & Feautrier)

Memory LY pirectory

1 dirty bit

With each cache-block in cache:
1 valid bit
1 dirty (owner) bit

| Interconnection Network

e coe ° + Assume P processors
pev + With each cache-block in memory:
+ P presence bits
1

presence bﬁs di!ty bit
+ Read from main memory by PE-i:
- if dirty-bit is OFF then { read from main memory; turn p[i] ON; }
- if dirty-bit is ON then { recall line from dirty PE (cache state to
shared); update memory: turn dirty-bit OFF; turn p[i] ON: supply
recalled data to PE-i; }
+ Write to main memory by PE-i:
- if dirty-bit OFF then { supply data to PE-i; send invalidations to all
PEs caching that block; turn dirty-bit ON; furn P[i]ON; ... }

€S 418

Page 4

— 14 -

Scaling with Number of Processors

+ Scaling of memory and directory bandwidth provided

Centralized directory is BW bottleneck, just like centralized memory
How to maintain directory information in distributed way?

+ Scaling of performance characteristics

traffic: # of network transactions each time protocol is invoked
latency: # of network transactions in critical path each time

+ Scaling of directory storage requirements

Number of presence bits needed grows as the number of processors

* How directory is organized affects all these, performance

at a target scale, as well as coherence management issues

CS418

-16 -

Insights into Directories

Inherent program characteristics:
+ determine whether directories provide big advantages over broadcast
+ provide insights into how to organize and store directory information

Characteristics that matter:
- frequency of write misses
- how many sharers on a write miss
- how these scale

-17 - CS 418

Cache Invalidation Patterns

Barnes-Hut Invalidation Patterns

#of invalidations

Radiosity Invalidation Patterns

1200

a16
|

224 159 115 0g7 52 22 L74 146 052 045 037 031 028 075 024 019 019 091
== (===

-19 -

Page 5

Cache Invalidation Patterns

LU Invalidation Patterns

EE23

Ocean Invalidation Patterns

EE]

20 1508

304
049 034
o l_ 003 0 003 0 0 0 0

o m & o o«

o

-18 -

Sharing Patterns Summary

Generally only a few sharers at a write, scales slowly with P:

Code and read-only objects (e.g, scene data in Raytrace)

- no problems as rarely written

Migratory objects (e.g., cost array cells in LocusRoute)

- evenas # of PEs scale, only 1-2 invalidations

Mostly-read objects (e.g., root of tree in Barnes)

- invalidations are large but infrequent, so little impact on performance
Frequently read/written objects (e.g., task queues)

- invalidations usually remain small, though frequent
Synchronization objects

- low-contention locks result in small invalidations

- high-contention locks heed special support (SW trees, queueing locks)

Implies directories very useful in containing traffic
if organized properly, traffic and latency shouldn't scale too badly

Suggests techniques to reduce storage overhead

-20- CS 418

Organizing Directories

Directory Schemes

.

Centralized Distributed
How to find source of |
Flat Hierarchical

directory information

How to locate copies

Memory-based Cache-based

Let's see how they work and their scaling characteristics with P

-21- CS 418

How Hierarchical Directories Work

processing nodes

(Tracks which of its children
processing nodes have a copy
level-1 directory of the memory block. Also tracks
which local memory blocks are
cached outside this subtree.
Inclusion is maintained between
processor caches and directory.)

(Tracks which of its children
level-1 directories have a copy
of the memory block. Also tracks
which local memory blocks are
cached outside this subtree.
Inclusion is maintained between
level-1 directories and level-2 directory.)

level-2 directory

Directory is a hierarchical data structure
+ leaves are processing nodes, internal nodes just directory
+ logical hierarchy, not necessarily physical
- can be embedded in general network

-23- CS 418

Page 6

How to Find Directory Information

centralized memory and directory - easy: go to it
+ but not scalable

distributed memory and directory
* flat schemes
- directory distributed with memory: at the Aome
- location based on address (hashing):
»message sent directly to home
* hierarchical schemes
- directory organized as a hierarchical data structure
- leaves are processing nodes, internal nodes have only directory state
- n?cgicelés directory entry for a block says whether each subtree caches the

- to find directory info, send “search” message up to parent
» routes itself through directory lookups

- like hiearchical snooping, but point-to-point messages between children
and parents

-22- €S 418

How Is Location of Copies Stored?

Hierarchical Schemes:
* through the hierarchy
- each directory has presence bits for its children (subtrees), & dirty bit|

Flat Schemes:
- varies a lot
- different storage overheads and performance characteristics
* Memory-based schemes
- info about copies stored all at the home with the memory block
- Dash, Alewife , SGI Origin, Flash
+ Cache-based schemes
- info about copies distributed among copies themselves
» each copy points to next
- Scalable Coherent Interface (SCI: IEEE standard)

-24- CS 418

Flat, Memory-based Schemes

All info about copies co-located with the block itself the
home

works just like centralized scheme, except physically distributed

Scaling of performance characteristics:
traffic on a write: proportional to number of sharers
latency of a write: can issue invalidations to sharers in parallel

-25- CS 418

Reducing Storage Overhead

* Full Bit Vector Schemes Revisited

+ Limited Pointer Schemes
+ reduce “width” of directory
-i.e. the "P" term

* Sparse Directories
+ reduce “height” of directory
- i.e. the "M" term

-27- CS 418

Page 7

How Does Storage Overhead Scale?

Simplest representation: full bit vector
+ i.e. one presence bit per node

Directory storage overhead: P
P = # of processors (or nodes) LI [eee
M = # of blocks in memory
+ overhead is proportional to P*M M
Does not scale well with P: °
+ 64-byte line implies:
- 64 nodes: 12.7% overhead
- 256 nodes: 50% overhead
- 1024 nodes: 200% overhead
-26- €S 418

The Full Bit Vector Scheme

Invalidation traffic is best
- because sharing information is accurate

Optimizations for full bit vector schemes:

+ increase cache block size:
- reduces storage overhead proportionally
- problems with this approach?

+ use multiprocessor nodes:
- bit per multiprocessor node, not per processor
- still scales as P*M, but not a problem for all but very large machines

»e.g., 256-procs, 4 per cluster, 128B line: 6.25% overhead

-28- CS 418

Limited Pointer Schemes

Observation:

+ Since data is expected to be in only a few caches at any one
time, a limited # of pointers per directory entry should suffice

Overflow Strategy:

+ What to do when # of sharers exceeds # of pointers?

Many different schemes based on differing overflow
strategies

-29- CS 418

Overflow Schemes (Continued)

Software (Dir,SW)
* trap to software, use any number of pointers (no precision loss)
- MIT Alewife: 5 ptrs, plus one bit for local node
+ but extra cost of interrupt processing on software
- processor overhead and occupancy
- latency:
» 40 to 425 cycles for remote read in Alewife
» 84 cycles for 5 inval, 707 for 6.

Dynamic Pointers (Dir,DP)
- use pointers from a hardware free list in portion of memory
+ manipulation done by hardware assist, not software
- e.g., Stanford FLASH

-31- CS 418

Page 8

Overflow Schemes for Limited Pointers

Broadcast (Dir;B)
+ broadcast bit turned on upon overflow
+ when is this bad?

No-broadcast (Dir,NB)

+ on overflow, new sharer replaces one of the old
ones (invalidated)
4

+ when is this bad? / —
Coarse Vector (Dir,CV) e —

+ change representation to a coarse vector:
- 1 bit per k nodes

- on a write, invalidate all nodes that a bit
corresponds to

== EE

=

(AL Querfbw

-30- €S 418

Some Data

Normalized Invalidations
8

LocusRoute Cholesky Barnes-Hut

+ 64 procs, 4 pointers, normalized to full-bit-vector
+ Coarse vector quite robust
General conclusions:
« full bit vector simple and good for moderate-scale
+ several schemes should be fine for large-scale, no clear winner yet

-32- CS 418

Reducing Height: Sparse Directories

Reduce M term in P*M

Observation: total number of cache entries << total amount
of memory.
+ most directory entries are idle most of the time
- 1MB cache and 64MB per node => 98.5% of entries are idle

Organize directory as a cache
+ but no need for backup store
- send invalidations to all sharers when entry replaced
- one entry per “line”; no spatial locality
- different access patterns (from many procs, but filtered)
- allows use of SRAM, can be in critical path
+ needs high associativity, and should be large enough

Can trade off width and height

-33- CS 418

Scaling Properties (Cache-based)

Traffic on write: proportional to number of sharers
Latency on write: proportional to number of sharers!
+ don't know identity of next sharer until reach current one
+ also assist processing at each node along the way
+ even reads involve more than one other assist:
- home and first sharer on list
Storage overhead: quite good scaling along both axes
+ Only one head pointer per memory block
- rest is all proportional to cache size
»but that information is stored in SRAM!
Other properties:
+ good: mature, IEEE Standard, fairness
+ bad: complex

-35- CS 418

Page 9

Flat, Cache-based Schemes

+ How they work:
+ home only holds pointer to rest of directory info
- distributed linked list of copies, weaves through caches
+ cache tag has pointer, points to next cache with a copy
+ on read: add yourself to head of the list (communication needed)
+ oh write: propagate chain of invalidations down the list

Main Memory
(Home)

Node 0 Node 1 Node 2

®

+ Scalable Coherent Interface (SCI) IEEE Standard

+ doubly linked list

-34- €S 418

Summary of Directory Organizations

Flat Schemes:
+ Issue (a): finding source of directory data:
+ go to home, based on address
+ Issue (b): finding out where the copies are
+ memory-based: all info is in directory at home
+ cache-based: home has pointer to first element of distributed linked list
+ Issue (c): communicating with those copies
+ memory-based: point-to-point messages (perhaps coarser on overflow)
- can be multicast or overlapped
+ cache-based: part of point-to-point linked list traversal to find them
- serialized

Hierarchical Schemes:
+ all three issues through sending messages up and down tree
* no single explicit list of sharers
+ only direct communication is between parents and children

-36- CS 418

Summary of Directory Approaches

Directories offer scalable coherence on general networks
+ no need for broadcast media
Many possibilities for organizing directory and managing
protocols
Hierarchical directories not used much
+ high latency, many network transactions, and BW bottleneck at root
Both memory-based and cache-based flat schemes are alive
+ for memory-based, full bit vector suffices for moderate scale
- measured in nodes visible to directory protocol, not processors

-37- CS 418

Page 10

