
Page 1

Cache Coherence for
Large-Scale Machines

Todd C. Mowry
CS 418

February 10 & 15, 2011

Topics
• Hierarchies
• Directory Protocols

Hierarchical Cache Coherence

P P P

Hierarchies arise in two ways:

C1

C2

(a)

C1 C1

C2

(b)

CS 418– 2 –

y
1. Processors have multiple levels of caches

• single cache hierarchy
2. Building a large-scale multiprocessor via a hierarchy of buses

• multi-cache hierarchy

Single Cache Hierarchies
P

L1

Inclusion Property: Everything in L1 cache is also present
in L2 cache.
• L2 must also be owner of block if L1 has the block dirty
• Snoop of L2 takes responsibility for recalling or invalidating data

L2

CS 418– 3 –

Snoop of L2 takes responsibility for recalling or invalidating data
due to remote requests

• It often helps if the block size in L1 is smaller or the same size
as that in L2 cache

Hierarchical Snoopy Cache Coherence
• Simplest way to build large-scale cache-coherent MPs is
to use a hierarchy of buses and use snoopy coherence at
each level.

• Two ways to build such a machine:
(a) Main memory centralized at the global (B2) bus
(b) Main memory distributed among the clusters

P P

L1 L1

P P

L1 L1

P P

L1 L1

P P

L1 L1

CS 418– 4 –

(a)

L2
B1

L2
B1

B2

Main Memory (Mp)

(b)

L2
B1

Memory

B1

L2
Memory

B2

Page 2

Hierarchies with Global Memory

P P

L1 L1

P P

L1 L1

• First-level caches:
• Highest performance SRAM caches.
• B1 follows standard snoopy protocol

L2
B1

L2
B1

B2

Main Memory (Mp)

CS 418– 5 –

py p
• Second-level caches:

• Much larger than L1 caches (set assoc). Must maintain inclusion.
• L2 cache acts as filter for B1-bus and L1-caches.
• L2 cache can be DRAM based, since fewer references get to it.

Hierarchies w/ Global Mem (Cont)

Advantages:
• Misses to main memory just require single traversal to the root of

th hi hthe hierarchy.
• Placement of shared data is not an issue.

Disadvantages:
• Misses to local data structures (e.g., stack) also have to traverse

the hierarchy, resulting in higher traffic and latency.
• Memory at the global bus must be highly interleaved. Otherwise

bandwidth to it will not scale.

CS 418– 6 –

Cluster Based Hierarchies
P P

L1 L1

P P

L1 L1

Key idea: Main memory is distributed among clusters.
• reduces global bus traffic

– local data and suitably placed shared data

L2
B1

Memory

B1

L2
Memory

B2

CS 418– 7 –

y p
• reduces latency

– less contention and local accesses are faster
• example machine: Encore Gigamax

Observation:
• L2 cache can be replaced by a tag-only router-coherence switch.

Encore Gigamax

P

C

P

C

P

C

P

C

Motorola 88K processors
8-way interleaved
memory

C C

UCC UIC

Fiber-optic link

C C

UCC UIC

Local
Nano Bus

(64-bit data, 32-bit address,
split-transaction, 80ns cycles)

Tag RAM only
for local data
cached remotely

Tag and Data RAMS
for remote data
cached locally

(Bit serial,
4 bytes every 80ns)

(Two 16MB banks
4-way associative)

CS 418– 8 –

UIC UIC

Global Nano Bus

Tag RAM only
for remote data
cached locally

(64-bit data, 32-bit address,
split-transaction, 80ns cycles)

Page 3

Cache Coherence in Gigamax
• Write to local-bus is passed to global-bus if:

• data allocated in remote Mp
ll d l l h• allocated local but present in some remote cache

• Read to local-bus passed to global-bus if:
• allocated in remote Mp, and not in cluster cache
• allocated local but dirty in a remote cache

• Write on global-bus passed to local-bus if:
• allocated in to local Mp
• allocated remote but dirty in local cache

CS 418– 9 –

• allocated remote, but dirty in local cache

• ...

• Many race conditions possible
• e.g., write-back going out as request coming in

Alternative: Hierarchy of Rings

• Hierarchical ring network, not bus
• examples:

– U. of Toronto: Hector, NUMAchine
– Kendall Square Research (KSR)

• Snoop on requests passing by on ring

CS 418– 10 –

• Point-to-point structure of ring implies:
• potentially higher bandwidth than buses
• higher latency

• May become interesting again in chip multiprocessors

Hierarchies: Summary

Advantages:
C t ll i l t b ild • Conceptually simple to build
– apply snooping recursively

• Can get merging and combining of requests in hardware

Disadvantages:
• Physical hierarchies do not provide enough bisection bandwidth

– the root becomes a bottleneck (e.g., 2-d, 3-d grid problems)

CS 418– 11 –

m (g , , g p m)
– patch solution: multiple buses/rings at higher levels

• Latencies often larger than in direct networks

Directory-Based Cache Coherence

Page 4

Motivation for Directory Schemes

• Snoopy schemes do not scale because they rely upon
broadcast

• Directory-based schemes allow scaling:
• they avoid broadcasts by:

– keeping track of all processors (PEs) caching a memory block,
– and then using point-to-point messages to maintain coherence

• they will work on any scalable point-to-point interconnect
– i e do not rely upon buses or other broadcast-based interconnects

CS 418– 13 –

i.e. do not rely upon buses or other broadcast based interconnects

Basic Scheme (Censier & Feautrier)

• Assume P processors
• With each cache-block in memory:

• P presence bits

P P

Cache Cache P presence bits
• 1 dirty bit

• With each cache-block in cache:
• 1 valid bit
• 1 dirty (owner) bit

• Read from main memory by PE-i:
– if dirty-bit is OFF then { read from main memory; turn p[i] ON; }

• ••Memory Directory

presence bits dirty bit

Interconnection Network

CS 418– 14 –

y y p
– if dirty-bit is ON then { recall line from dirty PE (cache state to

shared); update memory; turn dirty-bit OFF; turn p[i] ON; supply
recalled data to PE-i; }

• Write to main memory by PE-i:
– if dirty-bit OFF then { supply data to PE-i; send invalidations to all

PEs caching that block; turn dirty-bit ON; turn P[i] ON; ... }
– ...

Directory Protocol Examples
(a) Read miss to a block in dirty state

P R d t
1.

Requestor

P
RdEx request
to directory

1.Requestor

(b) Write miss to a block with two sharers

A M/D

C

P

A M/D

C

P

Read request
to directory

Reply with
owner identity

Read req.
to owner

Data
Reply

Revision message
to directory

2.

3.

4a.

4b.

Directory node
for block

P

A M/D

C
P

A M/D

C

P

to directory

Reply with
sharers identity

Inval. req.
to sharer

2.

P

Inval. req.
to sharer

Inval. ack Inval. ack

3a. 3b.

4a. 4b.

Directory node

CS 418– 15 –

A M/D

C

Node with
dirty copy

A M/D

C

A M/D

C

Sharer Sharer

Many alternative for organizing directory information

Scaling with Number of Processors

• Scaling of memory and directory bandwidth provided
• Centralized directory is BW bottleneck, just like centralized memoryy , j y
• How to maintain directory information in distributed way?

• Scaling of performance characteristics
• traffic: # of network transactions each time protocol is invoked
• latency: # of network transactions in critical path each time

• Scaling of directory storage requirements
• Number of presence bits needed grows as the number of processors

CS 418– 16 –

• How directory is organized affects all these, performance
at a target scale, as well as coherence management issues

Page 5

Insights into Directories

Inherent program characteristics:
• determine whether directories provide big advantages over broadcast• determine whether directories provide big advantages over broadcast
• provide insights into how to organize and store directory information

Characteristics that matter:
– frequency of write misses
– how many sharers on a write miss
– how these scale

CS 418– 17 –

how these scale

Cache Invalidation Patterns
LU Invalidation Patterns

91.22

60

70
80

90

100

8.75

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.22
0

10

20
30

40

50
60

0 1 2 3 4 5 6 7

8
to

 1
1

12
 to

 1
5

16
 to

 1
9

20
 to

 2
3

24
 to

 2
7

28
 to

 3
1

32
 to

 3
5

36
 to

 3
9

40
 to

 4
3

44
 to

 4
7

48
 to

 5
1

52
 to

 5
5

56
 to

 5
9

60
 to

 6
3

of invalidations

Ocean Invalidation Patterns

80.98
80

90

CS 418– 18 –

0

15.06

3.04 0.49 0.34 0.03 0 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0.02
0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7

8
to

 1
1

12
 to

 1
5

16
 to

 1
9

20
 to

 2
3

24
 to

 2
7

28
 to

 3
1

32
 to

 3
5

36
 to

 3
9

40
 to

 4
3

44
 to

 4
7

48
 to

 5
1

52
 to

 5
5

56
 to

 5
9

60
 to

 6
3

of invalidations

Cache Invalidation Patterns
Barnes-Hut Invalidation Patterns

48.35

30
35

40
45

50

1.27

22.87

10.56

5.33
2.87 1.88 1.4 2.5 1.06 0.61 0.24 0.28 0.2 0.06 0.1 0.07 0 0 0 0 0.33

0
5

10

15
20

25

0 1 2 3 4 5 6 7

8
to

 1
1

12
 to

 1
5

16
 to

 1
9

20
 to

 2
3

24
 to

 2
7

28
 to

 3
1

32
 to

 3
5

36
 to

 3
9

40
 to

 4
3

44
 to

 4
7

48
 to

 5
1

52
 to

 5
5

56
 to

 5
9

60
 to

 6
3

of invalidations

Radiosity Invalidation Patterns
58.35

50

60

CS 418– 19 –

6.68

12.04

4.16 2.24 1.59 1.16 0.97
3.28 2.2 1.74 1.46 0.92 0.45 0.37 0.31 0.28 0.26 0.24 0.19 0.19 0.91

0

10

20

30

40

0 1 2 3 4 5 6 7

8
to

 1
1

12
 to

 1
5

16
 to

 1
9

20
 to

 2
3

24
 to

 2
7

28
 to

 3
1

32
 to

 3
5

36
 to

 3
9

40
 to

 4
3

44
 to

 4
7

48
 to

 5
1

52
 to

 5
5

56
 to

 5
9

60
 to

 6
3

of invalidations

Sharing Patterns Summary
Generally, only a few sharers at a write, scales slowly with P:

• Code and read-only objects (e.g, scene data in Raytrace)
– no problems as rarely writtenno problems as rarely wr tten

• Migratory objects (e.g., cost array cells in LocusRoute)
– even as # of PEs scale, only 1-2 invalidations

• Mostly-read objects (e.g., root of tree in Barnes)
– invalidations are large but infrequent, so little impact on performance

• Frequently read/written objects (e.g., task queues)
– invalidations usually remain small, though frequent

• Synchronization objects

CS 418– 20 –

Synchronization objects
– low-contention locks result in small invalidations
– high-contention locks need special support (SW trees, queueing locks)

Implies directories very useful in containing traffic
• if organized properly, traffic and latency shouldn’t scale too badly

Suggests techniques to reduce storage overhead

Page 6

Organizing Directories

Directory Schemes

Centralized Distributed

HierarchicalFlatHow to find source of
directory information

CS 418– 21 –

Let’s see how they work and their scaling characteristics with P

Memory-based Cache-based
How to locate copies

How to Find Directory Information

centralized memory and directory - easy: go to it
• but not scalable

distributed memory and directory
• flat schemes

– directory distributed with memory: at the home
– location based on address (hashing):

»message sent directly to home
• hierarchical schemes

– directory organized as a hierarchical data structure

CS 418– 22 –

– leaves are processing nodes, internal nodes have only directory state
– node’s directory entry for a block says whether each subtree caches the

block
– to find directory info, send “search” message up to parent

»routes itself through directory lookups
– like hiearchical snooping, but point-to-point messages between children

and parents

How Hierarchical Directories Work

processing nodes

(Tracks which of its children

level-1 directory

level-2 directory

(
processing nodes have a copy
of the memory block. Also tracks
which local memory blocks are
cached outside this subtree.
Inclusion is maintained between
processor caches and directory.)(Tracks which of its children

level-1 directories have a copy
of the memory block. Also tracks
which local memory blocks are
cached outside this subtree.
Inclusion is maintained between
level-1 directories and level-2 directory.)

CS 418– 23 –

Directory is a hierarchical data structure
• leaves are processing nodes, internal nodes just directory
• logical hierarchy, not necessarily physical

– can be embedded in general network

y)

How Is Location of Copies Stored?
Hierarchical Schemes:

• through the hierarchy
• each directory has presence bits for its children (subtrees) & dirty biteach directory has presence bits for its children (subtrees), & dirty bit

Flat Schemes:
• varies a lot
• different storage overheads and performance characteristics
• Memory-based schemes

– info about copies stored all at the home with the memory block
– Dash, Alewife , SGI Origin, Flash

CS 418– 24 –

• Cache-based schemes
– info about copies distributed among copies themselves

»each copy points to next
– Scalable Coherent Interface (SCI: IEEE standard)

Page 7

Flat, Memory-based Schemes
All info about copies co-located with the block itself the

home
• works just like centralized scheme except physically distributed• works just like centralized scheme, except physically distributed

Scaling of performance characteristics:
• traffic on a write: proportional to number of sharers
• latency of a write: can issue invalidations to sharers in parallel

CS 418– 25 –

How Does Storage Overhead Scale?

Simplest representation: full bit vector
• i.e. one presence bit per node

Directory storage overhead:
P = # of processors (or nodes)
M = # of blocks in memory
• overhead is proportional to P*M

D l ll i h P

P

M

CS 418– 26 –

Does not scale well with P:
• 64-byte line implies:

– 64 nodes: 12.7% overhead
– 256 nodes: 50% overhead
– 1024 nodes: 200% overhead

Reducing Storage Overhead

• Full Bit Vector Schemes Revisited

• Limited Pointer Schemes
• reduce “width” of directory

– i.e. the “P” term

• Sparse Directories
• reduce “height” of directory

CS 418– 27 –

– i.e. the “M” term

The Full Bit Vector Scheme
Invalidation traffic is best

• because sharing information is accurate

Optimizations for full bit vector schemes:
• increase cache block size:

– reduces storage overhead proportionally
– problems with this approach?

• use multiprocessor nodes:
– bit per multiprocessor node, not per processor

CS 418– 28 –

p p p p
– still scales as P*M, but not a problem for all but very large machines

»e.g., 256-procs, 4 per cluster, 128B line: 6.25% overhead

Page 8

Limited Pointer Schemes

Observation:
• Since data is expected to be in only a few caches at any one

ti li it d # f i t di t t h ld ffitime, a limited # of pointers per directory entry should suffice

Overflow Strategy:
• What to do when # of sharers exceeds # of pointers?

Many different schemes based on differing overflow
strategies

CS 418– 29 –

strategies

Overflow Schemes for Limited Pointers

Broadcast (DiriB)
• broadcast bit turned on upon overflow

P0 P1 P2 P3

0

Overflow bit 2 Pointers

• when is this bad?
No-broadcast (DiriNB)

• on overflow, new sharer replaces one of the old
ones (invalidated)

• when is this bad?
Coarse Vector (DiriCV)

• change representation to a coarse vector: 1

Overflow bit 8-bit coarse vector

(a) No overflow

P0 P1 P2 P3

P4 P5 P6 P7

P8 P9 P10 P11

P12 P13 P14 P15

CS 418– 30 –

– 1 bit per k nodes
• on a write, invalidate all nodes that a bit

corresponds to

P0 P1 P2 P3

P4 P5 P6 P7

P8 P9 P10 P11

P12 P13 P14 P15

(a) Overflow

Overflow Schemes (Continued)

Software (DiriSW)
• trap to software, use any number of pointers (no precision loss)

MIT Al if : 5 t s l s bit f l l d– MIT Alewife: 5 ptrs, plus one bit for local node
• but extra cost of interrupt processing on software

– processor overhead and occupancy
– latency:

»40 to 425 cycles for remote read in Alewife
»84 cycles for 5 inval, 707 for 6.

Dynamic Pointers (Dir DP)

CS 418– 31 –

Dynamic Pointers (DiriDP)
• use pointers from a hardware free list in portion of memory
• manipulation done by hardware assist, not software
• e.g., Stanford FLASH

Some Data

600

700

800

lid
at

io
ns

0

100

200

300

400

500

LocusRoute Cholesky Barnes Hut

N
or

m
al
iz
ed

 I
nv

al

B
NB
CV

CS 418– 32 –

• 64 procs, 4 pointers, normalized to full-bit-vector
• Coarse vector quite robust

General conclusions:
• full bit vector simple and good for moderate-scale
• several schemes should be fine for large-scale, no clear winner yet

LocusRoute Cholesky Barnes-Hut

Page 9

Reducing Height: Sparse Directories
Reduce M term in P*M
Observation: total number of cache entries << total amount
of memoryof memory.
• most directory entries are idle most of the time
• 1MB cache and 64MB per node => 98.5% of entries are idle

Organize directory as a cache
• but no need for backup store

– send invalidations to all sharers when entry replaced
• one entry per “line”; no spatial locality

diff (f b fil d)

CS 418– 33 –

• different access patterns (from many procs, but filtered)
• allows use of SRAM, can be in critical path
• needs high associativity, and should be large enough

Can trade off width and height

Flat, Cache-based Schemes
• How they work:

• home only holds pointer to rest of directory info
• distributed linked list of copies weaves through cachesdistributed linked list of copies, weaves through caches

• cache tag has pointer, points to next cache with a copy
• on read: add yourself to head of the list (communication needed)
• on write: propagate chain of invalidations down the list

Main Memory
(Home)

Node 0 Node 1 Node 2

CS 418– 34 –

P

Cache

P

Cache

P

Cache

Node 0 Node 1 Node 2

• Scalable Coherent Interface (SCI) IEEE Standard
• doubly linked list

Scaling Properties (Cache-based)
Traffic on write: proportional to number of sharers
Latency on write: proportional to number of sharers!

• don’t know identity of next sharer until reach current one
• also assist processing at each node along the way
• even reads involve more than one other assist:

– home and first sharer on list
Storage overhead: quite good scaling along both axes

• Only one head pointer per memory block
– rest is all proportional to cache size

CS 418– 35 –

p p
»but that information is stored in SRAM!

Other properties:
• good: mature, IEEE Standard, fairness
• bad: complex

Summary of Directory Organizations

Flat Schemes:
• Issue (a): finding source of directory data:

 t h b d dd• go to home, based on address
• Issue (b): finding out where the copies are

• memory-based: all info is in directory at home
• cache-based: home has pointer to first element of distributed linked list

• Issue (c): communicating with those copies
• memory-based: point-to-point messages (perhaps coarser on overflow)

– can be multicast or overlapped
• cache-based: part of point-to-point linked list traversal to find them

i li d

CS 418– 36 –

– serialized

Hierarchical Schemes:
• all three issues through sending messages up and down tree
• no single explicit list of sharers
• only direct communication is between parents and children

Page 10

Summary of Directory Approaches

Directories offer scalable coherence on general networks
 d f b d di• no need for broadcast media

Many possibilities for organizing directory and managing
protocols

Hierarchical directories not used much
• high latency, many network transactions, and BW bottleneck at root

Both memory-based and cache-based flat schemes are alive
• for memory-based full bit vector suffices for moderate scale

CS 418– 37 –

for memory based, full bit vector suffices for moderate scale
– measured in nodes visible to directory protocol, not processors

