
1

Memory Consistency Models for 

Shared-Memory Multiprocessors

Carnegie Mellon

(Slide content courtesy of Kourosh Gharachorloo.)

Todd C. Mowry 15-418: Memory Consistency Models 1

Motivation

Processor
Caches  

Processor
Caches  …

• We want to build large-scale shared-memory multiprocessors

Memory Memory 

Interconnection Network

Carnegie Mellon

• High memory latency is a fundamental issue
– over 1000 cycles on recent machines

• Caches reduce latency, but inherent communication remains

Todd C. Mowry15-418: Memory Consistency Models 2

Hiding Memory Latency

• Overlap memory accesses with other accesses and computation

write A write A
read B

read B

Carnegie Mellon

• Simple in uniprocessors

• Can affect correctness in multiprocessors

Todd C. Mowry15-418: Memory Consistency Models 3

Outline

• Memory Consistency Models

• Framework for Programming Simplicity

• Performance Evaluation

• Conclusions

Carnegie Mellon
Todd C. Mowry15-418: Memory Consistency Models 4



2

Uniprocessor Memory Model

• Memory model specifies ordering constraints among accesses

• Uniprocessor model: memory accesses atomic and in program order

• Not necessary to maintain sequential order for correctness
– hardware: buffering, pipelining

write A
write B
read A
read B

Carnegie Mellon

– compiler: register allocation, code motion

• Simple for programmers

• Allows for high performance

Todd C. Mowry15-418: Memory Consistency Models 5

Shared-Memory Multiprocessors

• Order between accesses to different locations becomes important

P1 P2
(Initially A and Flag = 0)

A = 1;

Flag = 1; wait (Flag == 1);

… = A;

P1 P2

Carnegie Mellon
Todd C. Mowry15-418: Memory Consistency Models 6

How Unsafe Reordering Can Happen

Processor Processor Processor
A = 1;
Flag = 1; wait (Flag == 1);

… = A;

Memory Memory Memory

Interconnection Network

…
A: 0 Flag:0

A = 1;

Flag = 1;

1

Carnegie Mellon

• Distribution of memory resources
– accesses issued in order may be observed out of order

Todd C. Mowry15-418: Memory Consistency Models 7

Caches Complicate Things More
• Multiple copies of the same location

Carnegie Mellon
Todd C. Mowry15-418: Memory Consistency Models 8



3

Need for a Multiprocessor Memory Model

• Provide reasonable ordering constraints on memory accesses

– affects programmers

– affects system designers

Carnegie Mellon
Todd C. Mowry15-418: Memory Consistency Models 9

Memory Behavior

What should the semantics be for memory operations to the shared 
memory?

• ease-of-use: keep it similar to serial semantics for uniprocessor

• operating system community used concurrent programming:
– multiple processes interleaved on a single processor

• Lamport (1979) formalized Sequential Consistency (SC):
– “... the result of any execution is the same as if the operations of all 

the processors were executed in some sequential order, and the 
operations of each individual processor appear in this sequence in 

Carnegie Mellon

operations of each individual processor appear in this sequence in 
the order specified by its program.”

Todd C. Mowry15-418: Memory Consistency Models 10

Sequential Consistency

• Formalized by Lamport
– accesses of each processor in program order
– all accesses appear in sequential order

Carnegie Mellon

• Any order implicitly assumed by programmer is maintained

Todd C. Mowry15-418: Memory Consistency Models 11

Example with SC

Simple Synchronization:

P1 P2
A = 1 (a)( )
Flag = 1 (b) x = Flag (c)

y = A (d)

• all locations are initialized to 0
• possible outcomes for (x,y): 

– (0,0), (0,1), (1,1)
( )  (1 0) is t  ssibl  t :

Carnegie Mellon

• (x,y) = (1,0) is not a possible outcome:
– we know a->b and c->d by program order
– b->c  implies that a->d
– y==0 implies d->a which leads to a contradiction

Todd C. Mowry15-418: Memory Consistency Models 12



4

Another Example with SC

From Dekker’s Algorithm:

P1 P2
A = 1 (a) B = 1 (c)( ) ( )
x = B (b) y = A (d) 

• all locations are initialized to 0
• possible outcomes for (x,y): 

– (0,1), (1,0), (1,1)
• (x,y) = (0,0) is not a possible outcome:

– a->b and c->d implied by program order

Carnegie Mellon

a b and c d implied by program order
– x = 0 implies b->c which implies a->d
– a->d says y = 1 which leads to a contradiction
– similarly, y = 0 implies x = 1 which is also a contradiction

Todd C. Mowry15-418: Memory Consistency Models 13

How to Guarantee SC

• Sufficient Conditions for SC (Dubois et al., 1987):
– assumes general cache coherence (if we have caches):

• writes to the same location are observed in same order by all P’s
f  h  d l  i  f  til i  l t– for each processor, delay issue of access until previous completes

• a read completes when the return value is back
• a write completes when new value is visible to all processors

– for simplicity, we assume writes are atomic

• Important to note that these are not necessary conditions for 
maintaining SC

Carnegie Mellon
Todd C. Mowry15-418: Memory Consistency Models 14

Simple Bus-Based Multiprocessor

P1 Pn

Cache Cache

• assume write-back caches
• general cache coherence maintained by serialization at bus

– writes to same location serialized and observed in the same order by all

Cache Cache

Mem

Carnegie Mellon

y
• writes are atomic because all processors observe the write at the same time
• accesses from a single process complete in program order:

– cache is busy while servicing a miss, effectively delaying later access
• SC is guaranteed without any extra mechanism above coherence

Todd C. Mowry15-418: Memory Consistency Models 15

Example of Complication in Bus-Based Machines

L1 Cache L1 Cache
write-buffer write-buffer

P1 Pn

• 1st level cache write-thru, 2nd level write-back (e.g.,SGI cluster in DASH)
• write-buffer with no forwarding 

– (reads to 2nd level delayed until buffer empty)
• never hit in the 1st level cache: SC is maintained (same as previous slide)

Mem

L2 Cache L2 Cache

Carnegie Mellon

never hit in the 1st level cache  SC is maintained (same as previous slide)
• read hits in the first level cache cause complication 

– (e.g., Dekker’s algorithm)
• to maintain SC, we need to delay access to 1st level until there are no 

writes pending in write buffer (full write latency observed by processor)
• multiprocessors may not maintain SC to achieve higher performance

Todd C. Mowry15-418: Memory Consistency Models 16



5

Scalable Shared-Memory Multiprocessor
P1

Cache

Pn

Cache

• no more bus to serialize accesses
• only order maintained by network is point-to-point 
• general cache coherence:

– serialize at memory location; point-to-point order required
 i d i  d  d  t il  l t  i  d

Mem Mem

Interconnection Network

Carnegie Mellon

• accesses issued in order do not necessarily complete in order:
– due to distribution of memory and varied-length paths in network

• writes are inherently non-atomic:
– new value is visible to some while others can still see old value
– no one point in the system where a write is completed

Todd C. Mowry15-418: Memory Consistency Models 17

Scalable Shared-Memory Multiprocessor (Continued)
P1

Cache

Pn

Cache

• need to know when a write completes:
– for providing atomicity
– for delaying an access until previous one completes

• requires acknowledgement messages:
– write is complete when all invalidations are acknowledged
– use a counter to count the number of acknowledgements

Mem Mem

Interconnection Network

Carnegie Mellon

g
• ensuring atomicity for writes:

– delay access to new value until all acknowledgments are back
– can be done for invalidation-based schemes; unnatural for updates

• ensuring order of accesses from a processor:
– delay each access until the previous one completes

• latencies are large (100’s to 1000’s of cycles) and all latency seen by processor

Todd C. Mowry15-418: Memory Consistency Models 18

Summary for Sequential Consistency

• Maintain order between shared accesses in each process

• Severely restricts common hardware and compiler optimizations

Carnegie Mellon
Todd C. Mowry15-418: Memory Consistency Models 19

Alternatives to Sequential Consistency

• Relax constraints on memory order

Carnegie Mellon
Todd C. Mowry15-418: Memory Consistency Models 20



6

Relaxed Models

• Processor consistency (PC) - Goodman 89
• Total store ordering (TSO) - Sindhu 90
• Causal memory - Hutto 90
• PRAM - Lipton 90

• Partial store ordering (PSO) - Sindhu 90

• Weak ordering (WO) - Dubois 86

• Problems:

Carnegie Mellon

– programming complexity
– portability

Todd C. Mowry15-418: Memory Consistency Models 21

Framework for Programming Simplicity

• Develop a unified framework that provides

– programming simplicity

– all previous performance optimizations, and more

Carnegie Mellon
Todd C. Mowry15-418: Memory Consistency Models 22

Intuition

• “Correctness”: same results as sequential consistency
• Most programs don’t require strict ordering for “correctness”

Carnegie Mellon

• Difficult to automatically determine orders that are not necessary
• Specify methodology for writing “safe” programs

Todd C. Mowry15-418: Memory Consistency Models 23

Overview of Framework

• Programmer:

– methodology for writing programs

• System Designer:

– safe optimizations for such programs

Carnegie Mellon
Todd C. Mowry15-418: Memory Consistency Models 24



7

Synchronized Programs

• Requirements:
– all synchronizations are explicitly identified
– all data accesses are ordered through synchronization

• How do synchronized programs get generated?
1. Compiler generated parallel program

• synchronization automatically identified
2. Explicitly parallel program

• easily identifiable synchronization constructs
• programmer guarantees data access ordered

Carnegie Mellon
Todd C. Mowry15-418: Memory Consistency Models 25

Identifying Data Races and Synchronization

• Two accesses conflict if:
– access same location
– at least one is a write

Order accesses by:• Order accesses by:
– program order (po)
– dependence order (do): op1 --> op2 if op2 reads op1

P1 P2
Write A

Write Flag Read Flag
po

po

do

Carnegie Mellon

• Data Race:
– two conflicting accesses on different processors
– not ordered by intervening accesses

Todd C. Mowry15-418: Memory Consistency Models 26

Read A
p

Optimizations for Synchronized Programs

• Exploit information about synchronization

Carnegie Mellon

• Proof: synchronized programs yield SC results on RC systems

Todd C. Mowry15-418: Memory Consistency Models 27

Summary of Programmer Model

• Contract between programmer and system:
– programmer provides synchronized programs
– system provides sequential consistency at higher performance

• Allows portability over a wide range of implementations

• Research on similar frameworks:
– Properly-labeled (PL) programs - Gharachorloo 90
– Data-race-free (DRF) - Adve 90
– Unifying framework (PLpc) - Gharachorloo,Adve 92

Carnegie Mellon
Todd C. Mowry15-418: Memory Consistency Models 28



8

Outline

• Memory Consistency Models
• Framework for Programmer Simplicity
• Performance Evaluation

Carnegie Mellon
Todd C. Mowry15-418: Memory Consistency Models 29

Performance Evaluation

• Goal: characterize gains from relaxed models

– relaxed models effective in hiding memory latency

– enhance gains from other latency hiding techniques

Carnegie Mellon
Todd C. Mowry15-418: Memory Consistency Models 30

Architectural Assumptions

Processor
Caches  

Processor
Caches  …

• Based on Stanford DASH multiprocessor
C h t h  di t b d i lid ti  h

Memory Memory 

Interconnection Network

Carnegie Mellon

• Coherent caches, directory-based invalidation scheme
• Latency = 1:25:100 processor cycles
• Detailed simulation, contention modeled
• 16 processors

Todd C. Mowry15-418: Memory Consistency Models 31

Benchmark Applications

• MP3D: 3-dimensional particle simulator
– 10,000 particles, 5 time steps

• LU: LU-decomposition of dense matrix
– 200x200 matrix

• PTHOR: logic simulator
– 11,000 two-input gates, 5 clock cycles

Carnegie Mellon
Todd C. Mowry15-418: Memory Consistency Models 32



9

• Processor issues accesses one-at-a-time and stalls for completion

Performance of Sequential Consistency

Carnegie Mellon

• Low processor utilization (17% - 42%) even with caching

Todd C. Mowry15-418: Memory Consistency Models 33

Relaxed Models

• Focus on release consistency
• Various degrees of aggressiveness:

– implementation requirements
– performance benefits

Carnegie Mellon
Todd C. Mowry15-418: Memory Consistency Models 34

Requirement for W-R Overlap

• Processor stalls on reads

Carnegie Mellon

• Reads bypass write buffer
• Cache is “lockup-free” (Kroft 81)

– i.e. allows more than one outstanding request

Todd C. Mowry15-418: Memory Consistency Models 35

Allowing Reads to Overlap Previous Writes

Carnegie Mellon

• Write latency is fully hidden

Todd C. Mowry15-418: Memory Consistency Models 36



10

Requirement for W-W Overlap

Carnegie Mellon

• Cache allows multiple outstanding writes

Todd C. Mowry15-418: Memory Consistency Models 37

Allowing Writes to Overlap

Carnegie Mellon

• Overlapping of writes allows for faster synchronization on critical path

Todd C. Mowry15-418: Memory Consistency Models 38

Write A         LOCK L
Write B         Read A
UNLOCK L Read B

Requirement for R-R and R-W Overlap

• Allow processor to continue past read misses

Carnegie Mellon

• Lookahead ability provided in dynamically scheduled processor

Todd C. Mowry15-418: Memory Consistency Models 39

Dynamically Scheduled Processor

• Processor based on detailed design in Mike Johnson’s thesis

Carnegie Mellon

• Lookahead window size important

Todd C. Mowry15-418: Memory Consistency Models 40



11

Results with Dynamically Scheduled Processor

BR: Blocking Reads (W-R and W-W)
DSn: Dynamically Scheduled (window size n)

Carnegie Mellon

• Latency of reads can be partially hidden
– window size matters
– not fully hidden

Todd C. Mowry15-418: Memory Consistency Models 41

DSn: Dynamically Scheduled (window size n)

Performance Summary

• Relaxed models effective in hiding memory latency:
– simple processor, lockup-free cache: 1.1X - 1.4X
– more aggressive processor: 1.5X - 2.1X

• Gains increase with more processors and higher latency

Carnegie Mellon
Todd C. Mowry15-418: Memory Consistency Models 42

Interactions with Other Latency Hiding Techniques

• Prefetching
– software controlled

• Multiple contexts
– switch on long-latency operations

Carnegie Mellon

• Conventional processor (not dynamically scheduled)

Todd C. Mowry15-418: Memory Consistency Models 43

Interaction with Prefetching

• Prefetching both reads and writes

Carnegie Mellon

• Release consistency fully hides remaining write latency

Todd C. Mowry15-418: Memory Consistency Models 44



12

Interaction with Multiple Contexts

• Four contexts, switch latency of 4 cycles

Carnegie Mellon

• Write misses no longer require a context switch

Todd C. Mowry15-418: Memory Consistency Models 45

Summary of Interaction with Other Techniques

• Release consistency complements prefetching and multiple contexts

– gains over prefetching: 1.1 - 1.4x

– gains over multiple contexts: 1.2 - 1.3x

– lockup-free caches common requirement

Carnegie Mellon
Todd C. Mowry15-418: Memory Consistency Models 46

Other Gains from Relaxed Models

• Common compiler optimizations require reordering of accesses
– e.g., register allocation, code motion, loop transformation

• Sequential consistency disallows reordering of shared accesses

• What model is best for compiler optimizations?
– intermediate models (e.g. PC) not flexible enough
– weak ordering and release consistency only models that work

Carnegie Mellon
Todd C. Mowry15-418: Memory Consistency Models 47

Conclusions

• Relaxed models 
– substantial performance gains in hardware and software
– simple abstraction for programmers

• Commercial machines have relaxed memory models
– e.g., x86, etc.

Carnegie Mellon
Todd C. Mowry15-418: Memory Consistency Models 48


