
Page 1

Scalable Distributed
Memory MultiprocessorsMemory Multiprocessors

Todd C. Mowry
CS 418

March 22 & 23, 2011

Outline

Scalability
• physical, bandwidth, latency and costp y y
• level of integration

Realizing Programming Models
• network transactions
• protocols
• safety

– input buffer problem
f tch d dl ck

CS 418– 2 –

– fetch deadlock

Communication Architecture Design Space
• how much hardware interpretation of the network transaction?

Limited Scaling of a Bus

Characteristic Bus

Physical Length ~ 1 ft

Number of Connections fixed

Maximum Bandwidth fixed

Interface to Comm. medium memory interface

Global Order arbitration

Protection virtual memory

Trust total

OS single

b t ti HW

CS 418– 3 –

Bus: each level of the system design is grounded in the
scaling limits at the layers below and assumptions of close
coupling between components

comm. abstraction HW

PCs in a LAN?
Characteristic Bus LAN

Physical Length ~ 1 ft KM

Number of Connections fixed manyNumber of Connections fixed many

Maximum Bandwidth fixed ???

Interface to Comm. medium memory interface peripheral

Global Order arbitration ???

Protection virtual memory OS

Trust total none

OS single independent

comm. abstraction HW SW

CS 418– 4 –

No clear limit to physical scaling, little trust, no
global order, consensus difficult to achieve.

Independent failure and restart

Page 2

Scalable Machines

What are the design trade-offs for the spectrum of
machines between?
• specialize or commodity nodes?
• capability of node-to-network interface
• supporting programming models?

What does scalability mean?
• avoids inherent design limits on resources
• bandwidth increases with P

CS 418– 5 –

• latency does not
• cost increases slowly with P

Bandwidth Scalability
Typical switches

Bus

What fundamentally limits bandwidth?

P M M P M M P M M P M M

S S S S

Multiplexers

Crossbar

CS 418– 6 –

What fundamentally limits bandwidth?
• single set of wires

Must have many independent wires
Connect modules through switches
Bus vs Network Switch?

Dancehall MP Organization

Scalable net ork

M M M



Scalable network

P

$

Switch

P

$

P

$

P

$

Switch Switch

CS 418– 7 –

Network bandwidth?
Bandwidth demand?

• independent processes?
• communicating processes?

Latency?

PP P P

Generic Distributed Memory Org.
Scalable network

CA

P

$

Switch

M

Switch Switch

CS 418– 8 –

Network bandwidth?
Bandwidth demand?

• independent processes?
• communicating processes?

Latency?

Page 3

Key Property

Large # of independent communication paths between nodes
• allow a large # of concurrent transactions using different wires

Initiated independently
No global arbitration
Effect of a transaction only visible to the nodes involved

• effects propagated through additional transactions

CS 418– 9 –

Latency Scaling

T(n) = Overhead + Channel Time + Routing Delay
Overhead?
Channel Time(N) = N/B

• N = # of bytes in message
• B = bandwidth of channel’s bottleneck

Routing Delay(H,N)
• H = # of hops to route message

CS 418– 10 –

Typical Example

max distance: log P
number of switches:  P log Pg
overhead = 1 us, BW = 64 MB/s, 200 ns per hop

Store and Forward
Tsf

64 (128) = 1.0 us + 6 hops * (2.0 + 0.2) us/hop = 14.2 us
Tsf

1024(128) = 1.0 us + 10 hops * (2.0 + 0.2) us/hop = 23 us

CS 418– 11 –

Pipelined
T64(128) = 1.0 us + 2.0 us + 6 hops * 0.2 us/hop = 4.2 us
T1024(128) = 1.0 us + 2.0 us + 10 hops * 0.2 us/hop = 5.0 us

Cost Scaling

cost(P,M) = fixed cost + incremental cost (P,M)
• P = # of processors, M = amount of memory

Bus Based SMP?
Ratio of processors : memory : network : I/O ?

Parallel efficiency(p) = Speedup(P) / P

Costup(p) = Cost(P) / Cost(1)

CS 418– 12 –

Costup(p) Cost(P) / Cost(1)

Cost-effective: Speedup(P) > Costup(P)

Page 4

Physical Scaling

Different Levels of Integration:
• Chip-level integration
• Board-level integration
• System-level integration

CS 418– 13 –

nCUBE/2 Machine Organization
Basic module

Single-chip node

Hypercube network
configura tion

DRAM interface

D
M

A
ch

an
ne

ls

R
ou

te
r

M MU

I-Fetch
&

decode

64-bit integer
IEEE floa ting po in t

Operand
$

E xecution un it

1024 Nodes

CS 418– 14 –

Entire machine synchronous at 40 MHz

IEEE floa ting po in t

IBM Blue Gene/L

CS 418– 15 –

Nodes: 2 PowerPC 400s; everything except DRAM on one chip

CM-5 Machine Organization
Diagnostics network

Control network
Data network

Processing
partition

Processing
partition

Control
processors

I/O partition

PM PM

SPARC

MBUS

FPU Data
networks

Control
network

$
ctrl

$
SRAM

NI

CS 418– 16 –

Board-level integration

DRAM
ctrl

DRAM DRAM DRAM DRAM

DRAM
ctrl

Vector
unit DRAM

ctrl
DRAM

ctrl

Vector
unit

Page 5

System Level Integration

IBM SP-2

Memory bus

IBM SP-2 node

L2 $

Power 2
CPU

Memory
controller

4-way
interleaved

DRAM

General interconnection
network formed from
8-port switches

CS 418– 17 –

MicroChannel bus

I/O

i860 NI

DMA

D
R

A
M

NIC

Outline

Scalability
• physical, bandwidth, latency and cost
• level of integration

Realizing Programming Models
• network transactions
• protocols
• safety

– input buffer problem
– fetch deadlock

CS 418– 18 –

f
Communication Architecture Design Space

• how much hardware interpretation of the network transaction?

Programming Models Realized by Protocols

CAD Database Scientific modeling Parallel applications

Multiprogramming Shared
address

Message
passing

Data
parallel

Programming models

Communication abstraction
User/system boundary

Compilation
or library

Operating systems support

Communication hardware
Hardware/software boundary

CS 418– 19 –

Physical communication medium

Network Transactions

Network Transaction Primitive

Communication Network

serialized msg

One-way transfer of information from a source output

output buffer input buffer

Source Node Destination Node



CS 418– 20 –

One way transfer of information from a source output
buffer to a destination input buffer
• causes some action at the destination

– e.g., deposit data, state change, reply
• occurrence is not directly visible at source

Page 6

Bus Transactions vs.
Network Transactions

Issues: Bus Network
protection check V->P ??p
format wires flexible
output buffering reg, FIFO ??
media arbitration global local
destination naming and routing
input buffering limited many source
action

CS 418– 21 –

action
completion detection

Shared Address Space Abstraction

Load r  Global address]

R d

(1) Initiate memory access
(2) Address translation
(3) Local /remote check

Source Destination

Fund m nt ll t r qu st/r sp ns pr t c l
Time

Read request

Read request

Memory access

Read response

(4) Request transaction

(5) Remote memory access

(6) Reply transaction

(7) Complete memory access

Wait

Read response

CS 418– 22 –

Fundamentally a two-way request/response protocol
• writes have an acknowledgement

Issues:
• fixed or variable length (bulk) transfers
• remote virtual or physical address, where is action performed?
• deadlock avoidance and input buffer full
• cache coherence and memory consistency (discussed earlier)

The Fetch Deadlock Problem

• Even if a node cannot issue a request, it must sink
network transactions.

• Incoming transaction may be a request, which will
generate a response.

• Closed system (finite buffering)

CS 418– 23 –

Key Properties of SAS Abstraction

• Source and destination data addresses are specified by the
source of the request
• a degree of logical coupling and trust

• No storage logically “outside the application address
space(s)”

– may employ temporary buffers for transport
• Operations are fundamentally request-response
• Remote operation can be performed on remote memory

• logically does not require intervention of the remote processor

CS 418– 24 –

• logically does not require intervention of the remote processor

Page 7

Message Passing

Bulk transfers
Complex synchronization semanticsp y

• more complex protocols
• more complex action

Synchronous
• Send completes after matching recv and source data sent
• Receive completes after data transfer complete from matching

send

CS 418– 25 –

Asynchronous
• Send completes after send buffer may be reused

Synchronous Message Passing
Source Destination

Send Pdest, local VA, len

(1) Initiate send

(2) Address translation on Psrc

Recv Psrc, local VA, len

(3) Local/remote check

Send-rdy req

Tag check

(4) Send-ready request

(6) Reply transaction

Wait

Recv-rdy reply

(5) Remote check for
posted receive
(assume success)

(7) Bulk data transfer
Source VA  Dest VA or ID

Processor
Action?

CS 418– 26 –

Constrained programming model.
Deterministic! What happens when threads added?
Destination contention very limited.
User/System boundary?

Time

Data-xfer req

Asynch. Message Passing: Optimistic
Source Destination

Send (P local VA len)

(1) Initiate send
(2) Address translation

Send (Pdest, local VA, len)

(4) Send data

Data-xfer req
Tag match

Allocate buffer

(3) Local /remote check

(5) Remote check for
posted receive; on fail,
allocate data buffer

CS 418– 27 –

More powerful programming model
Wildcard receive => non-deterministic
Storage required within message layer?

Time
Recv Psrc, local VA, len

Asynchronous Message
Passing: Conservative

Source Destination

Send Pdest, local VA, len

Send-rdy req

(1) Initiate send
(2) Address translation on Pdest

(4) Send ready request

(3) Local /remote check

Send-rdy req

Tag check

(4) Send-ready request

(6) Receive-ready request

Return and compute

Recv Psrc, local VA, len

Recv-rdy req

(5) Remote check for posted
receive (assume fail);
record send-ready

(7) Bulk data reply
Source VA  Dest VA or ID

CS 418– 28 –

Where is the buffering?
Contention control? Receiver initiated protocol?
Short message optimizations

Time

Data-xfer reply

Page 8

Key Features of
Message Passing Abstraction

Source knows send data address, destination knows receive
data address
• after handshake they both know both

Arbitrary storage “outside the local address spaces”
• may post many sends before any receives
• non-blocking asynchronous sends reduces the requirement to an

arbitrary number of descriptors
– fine print says these are limited too

Fundamentally a 3-phase transaction

CS 418– 29 –

y p
• includes a request / response
• can use optimistic 1-phase in limited “safe” cases

– credit scheme

Common Challenges

Avoiding Input Buffer Overflow
• requires flow-control on the sources

Approaches:
1. Reserve space per source (credit)

– when available for reuse?
» explicit ack or higher-level feedback

2. Refuse input when full
– backpressure in reliable network
– tree saturation

CS 418– 30 –

tree saturation
– deadlock free
– what happens to traffic not bound for congested destination?

3. Reserve ack back channel
4. Drop packets
5. Utilize higher-level semantics of programming model

Common Challenges (Cont)
Avoiding Fetch Deadlock

• For network to remain deadlock free, nodes must continue accepting
messages, even when cannot source msgs
h if i i i i ?• what if incoming transaction is a request?

– each may generate a response, which cannot be sent!
– what happens when internal buffering is full?

Approaches:
1. Logically independent request/reply networks

– physical networks
i t l h ls ith s t i t/ t t s

CS 418– 31 –

– virtual channels with separate input/output queues
2. Bound requests and reserve input buffer space

– K(P-1) requests + K responses per node
– service discipline to avoid fetch deadlock?

3. NACK on input buffer full
– NACK delivery?

Challenges in Realizing Programming
Models in the Large

• One-way transfer of information
• No global knowledge, nor global controlg g , g

• barriers, scans, reduce, global-OR give fuzzy global state
• Very large number of concurrent transactions
• Management of input buffer resources

• many sources can issue a request and over-commit destination before
any see the effect

• Latency is large enough that you are tempted to “take
risks”

CS 418– 32 –

risks
• optimistic protocols
• large transfers
• dynamic allocation

• Many many more degrees of freedom in design and
engineering of these system

Page 9

Summary

Scalability
• physical, bandwidth, latency and cost
• level of integration

Realizing Programming Models
• network transactions
• protocols
• safety

– input buffer problem
– fetch deadlock

CS 418– 33 –

f
Communication Architecture Design Space

• how much hardware interpretation of the network transaction?

Network Transaction Processing
Scalable Network

Message

PM

CA

PM

CA
° ° °

Node Architecture

Communication Assist
Output Processing
– checks
– translation
– formatting
– scheduling

Input Processing
– checks
– translation
– buffering
– action

CS 418– 34 –

Key Design Issues:
• How much interpretation of the message?
• How much dedicated processing in the communication assist (CA)?

Spectrum of Designs

None: Physical bit stream
• blind, physical DMA nCUBE, iPSC, . . .

on
,

User/System
• User-level port CM-5, *T
• User-level handler J-Machine, Monsoon, . .

Remote virtual address
• Processing, translation Paragon, Meiko CS-2

Global physical address
P M t ll RP3 BBN T3DW

 S
up

po
rt

,
Sp

ec
ia
liz

at
io

es
s,

 P
er

fo
rm

an
ce

 (
??

?)

CS 418– 35 –

• Proc + Memory controller RP3, BBN, T3D
Cache-to-cache

• Cache controller Dash, KSR, Flash

In
cr

ea
si
ng

 H
W

In
tr

us
iv
en

e

Net Transactions: Physical DMA
DestData

• DMA controlled by regs, generates interrupts

PMemory

Cmd
Addr
Length
Rdy

PMemory

DMA
channels

Status,
interrupt

Addr
Length
Rdy



sender auth

CS 418– 36 –

• Physical => OS initiates transfers
• Sender:

• construct system “envelope” around user data in kernel area
• Receiver:

• must receive into system buffer, since no interpretation in CA

sender auth

dest addr

Page 10

nCUBE Network Interface

Switch

Input ports



Output ports



Processor

Switch

Memory

Addr Addr
Length

Addr Addr Addr
Length

Addr
Length

DMA
channels

Memory
bus

CS 418– 37 –

• independent DMA channel per link direction
• leave input buffers always open
• segmented messages

• routing interprets envelope
• dimension-order routing on hypercube
• bit-serial with 36 bit cut-through

Send Overhead: 16 insts, 260 cycles, 13 usec

Recv Overhead: 18 insts, 200 cycles, 15 usec

- includes interrupt

Conventional LAN Network Interface

trncv

Host Memory NIC

NIC Controller

DMA
addr

len
TX
RX

Addr Len
Status
Next

Addr Len
Status

Addr Len
Status
Next

Addr Len
Status

Data

IO Bus
mem bus

CS 418– 38 –

Status
Next

Addr Len
Status
Next

Status
Next

Addr Len
Status
Next

Proc

User Level Ports
DestData

User/system

• initiate transaction at user level
• deliver to user without OS intervention

PMem PMemStatus,
interrupt



CS 418– 39 –

deliver to user without OS intervention
• network port in user space
• user/system flag in envelope

• protection check, translation, routing, media access in src CA
• user/sys check in dest CA, interrupt on system

User Level Network ports
Virtual address space

Net output
port

Status

Net input
port

Program counter

Registers

Processor

CS 418– 40 –

Appears to user as logical message queues plus status
What happens if no user pop?

Page 11

Example: CM-5

• Input and output FIFO
for each network

Diagnostics network
Control network

Data network

for each network
• 2 data networks
• tag per message

• index NI mapping table
• context switching?

• *T integrated NI on chip

Processing
partition

Processing
partition

Control
processors

I/O partition

PM PM

SPARC

MBUS

FPU Data
networks

Control
network

$
ctrl

$
SRAM

NI

CS 418– 41 –

T integrated NI on chip
• iWARP also DRAM

ctrl

DRAM DRAM DRAM DRAM

DRAM
ctrl

Vector
unit DRAM

ctrl
DRAM

ctrl

Vector
unit

Os 50 cy 1.5 us

Or 53 cy 1.6 us

interrupt 10us

User Level Handlers
U s e r / s y s t e m

D e s tD a t a A d d r e s s

M e m M e m

  

CS 418– 42 –

Hardware support to vector to address specified in message
• message ports in registers

PM e m P
M e m

J-Machine

Each node a small msg driven

CS 418– 43 –

processor
HW support to queue msgs and
dispatch to msg handler task

*T

CS 418– 44 –

Page 12

iWARP

Interface unit

Host

• Nodes integrate
communication with
computation on systolic
basis

CS 418– 45 –

basis
• Msg data direct to
register

• Stream into memory

Dedicated Message Processing Without
Specialized Hardware Design

Network

dest

° ° °

Mem

P M P

NI

User System

Mem

P M P

NI

User System

CS 418– 46 –

General Purpose processor performs arbitrary output processing (at system level)
General Purpose processor interprets incoming network transactions (at system level)
User Processor <–> Msg Processor via shared memory
Msg Processor <–> Msg Processor via system network transaction

Levels of Network Transaction
Network

dest

° ° °Mem

P M P

NI

User System

Mem

PM P

NI

CS 418– 47 –

User Processor stores cmd / msg / data into shared output queue
• must still check for output queue full (or make elastic)

Communication assists make transaction happen
• checking, translation, scheduling, transport, interpretation

Effect observed on destination address space and/or events
Protocol divided between two layers

Example: Intel Paragon

Network
I/O
Nodes

I/O
Nodes

Service

° ° °Mem

16 175 MB/s Duplex
rte
MP handlerEOP

Devices

Devices

2048 B

CS 418– 48 –

Mem

P M P

NI
i860xp
50 MHz
16 KB $
4-way
32B Block
MESI

sDMA
rDMA

64
400 MB/s

$ $

Var data
EOP2048 B

Page 13

User Level Abstraction

Proc
OQ

IQ
Proc

OQ

IQ

VAS

Proc
OQ

IQ

VAS

VAS

Proc
OQ

IQ

VAS

CS 418– 49 –

Any user process can post a transaction for any other in
protection domain
• communication layer moves OQsrc –> IQdest

• may involve indirection: VASsrc –> VASdest

Message Processor Events

User Output
Queues

Dispatcher
Send DMA

Rcv DMA

DMA done

Compute
Processor
Kernel

System
Event

CS 418– 50 –

Send FIFO
~Empty

Rcv FIFO
~Full

Basic Implementation Costs: Scalar

CP MP MP CP Net

2 1.5 2

10.5 µs

2 2 2

User
OQ

Registers

Cache

Net FIFO

User
IQ

4.4 µs 5.4 µs

7 wds

250ns + H*40ns

CS 418– 51 –

• Cache-to-cache transfer (two 32B lines, quad word ops)
• producer: read(miss,S), chk, write(S,WT), write(I,WT),write(S,WT)
• consumer: read(miss,S), chk, read(H), read(miss,S), read(H),write(S,WT)

• to NI FIFO: read status, chk, write, . . .
• from NI FIFO: read status, chk, dispatch, read, read, . . .

250ns + H 40ns

Virtual DMA -> Virtual DMA

CP MP MP CP Net

Memory

sDMA rDMA

MPCP

User
OQ

MP

Registers

Cache

Net FIFO

User
IQ

MPNet
2 1.5 2

7 wds

2 2 2

hdr

MP

2048
2048

400 MB/s 400 MB/s

CS 418– 52 –

• Send MP segments into 8K pages and does VA –> PA
• Recv MP reassembles, does dispatch and VA –> PA per page

175 MB/s

Page 14

Single Page Transfer Rate

400
Total MB/s

Actual Buffer Size: 2048
Effective Buffer Size: 3232

150

200

250

300

350

Total MB/s

Burst MB/s

CS 418– 53 –

Transfer Size (B)

0

50

100

0 2000 4000 6000 8000

Message Processor Assessment

User Output
QueuesUser Input

Queues

VAS

Send FIFO
~Empty

Rcv FIFO
~Full

Send DMA

Rcv DMA

DMA done

Compute
Processor
Kernel

System
Event

Queues

Dispatcher

CS 418– 54 –

Concurrency Intensive
• Need to keep inbound flows moving while outbound flows stalled
• Large transfers segmented

Reduces overhead but adds latency

