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Introduction

Rich space of techniques and issues
• Trade off and interact with one another

Issues can be addressed/helped by software or hardware
• Algorithmic or programming techniques
• Architectural techniques

Focus here on performance issues and software techniques
• Point out some architectural implications
• Architectural techniques covered in rest of class
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Programming as Successive Refinement
Not all issues dealt with up front
Partitioning often independent of architecture, and done first

• View machine as a collection of communicating processors• View machine as a collection of communicating processors
– balancing the workload
– reducing the amount of inherent communication
– reducing extra work

• Tug-o-war even among these three issues
Then interactions with architecture

• View machine as extended memory hierarchy
  d   h l 
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– extra communication due to architectural interactions
– cost of communication depends on how it is structured

• May inspire changes in partitioning
Discussion of issues is one at a time, but identifies tradeoffs

• Use examples, and measurements on SGI Origin2000

Outline
1. Partitioning for performance

2. Relationship of communication, data locality and p , y
architecture

3. Orchestration for performance

For each issue:
• Techniques to address it, and tradeoffs with previous issues
• Illustration using case studies 
• Application to grid solver
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pp g
• Some architectural implications

4. Components of execution time as seen by processor
• What workload looks like to architecture, and relate to software 

issues
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Partitioning for Performance

1. Balancing the workload and reducing wait time at synch 
points

2. Reducing inherent communication
3. Reducing extra work

Even these algorithmic issues trade off:
• Minimize comm. => run on 1 processor => extreme load imbalance
• Maximize load balance => random assignment of tiny tasks => no 

control over communication
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control over communication
• Good partition may imply extra work to compute or manage it

Goal is to compromise
• Fortunately, often not difficult in practice

Load Balance and Synch Wait Time

Limit on speedup:  Speedupproblem(p) <  

• Work includes data access and other costs

Sequential Work
Max Work on any Processor

• Work includes data access and other costs
• Not just equal work, but must be busy at same time

Four parts to load balance and reducing synch wait time:

1.  Identify enough concurrency

2.  Decide how to manage it
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g

3.  Determine the granularity at which to exploit it

4.  Reduce serialization and cost of synchronization

Identifying Concurrency
Techniques seen for equation solver:

• Loop structure, fundamental dependences, new algorithms
Data Parallelism versus Function ParallelismData Parallelism versus Function Parallelism
Often see orthogonal levels of parallelism; e.g. VLSI routing

Wire W2 expands to segments

W1 W2 W3

(a)
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Segment S23 expands to routes

S21 S22 S23 S24 S25 S26

(b)

(c)

Identifying Concurrency (contd.)

Function parallelism:
• entire large tasks (procedures) that can be done in parallel
• on same or different data
• e.g. different independent grid computations in Ocean
• pipelining, as in video encoding/decoding, or polygon rendering
• degree usually modest and does not grow with input size
• difficult to load balance
• often used to reduce synch between data parallel phases
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Most scalable programs data parallel (per this loose 
definition)
• function parallelism reduces synch between data parallel phases
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Load Balance and Synch Wait Time

Limit on speedup:  Speedupproblem(p) <  
• Work includes data access and other costs

Sequential Work
Max Work on any Processor

• Work includes data access and other costs
• Not just equal work, but must be busy at same time

Four parts to load balance and reducing synch wait time:

1.  Identify enough concurrency

2.  Decide how to manage it
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g

3.  Determine the granularity at which to exploit it

4.  Reduce serialization and cost of synchronization

Deciding How to Manage Concurrency

Static versus Dynamic techniques
Static:

• Algorithmic assignment based on input; won’t change
• Low runtime overhead
• Computation must be predictable
• Preferable when applicable (except in multiprogrammed or 

heterogeneous environment)
Dynamic:

• Adapt at runtime to balance load
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p un m n
• Can increase communication and reduce locality
• Can increase task management overheads

Dynamic Assignment

Profile-based (semi-static):
• Profile work distribution at runtime, and repartition dynamically
• Applicable in many computations, e.g. Barnes-Hut, some graphics

Dynamic Tasking:
• Deal with unpredictability in program or environment (e.g. 

Raytrace)
– computation, communication, and memory system interactions 
– multiprogramming and heterogeneity
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p g g g y
– used by runtime systems and OS too

• Pool of tasks; take and add tasks until done
• E.g. “self-scheduling” of loop iterations (shared loop counter)

Dynamic Tasking with Task Queues

Centralized versus distributed queues
Task stealing with distributed queuesg q

• Can compromise comm and locality, and increase synchronization
• Whom to steal from, how many tasks to steal, ...
• Termination detection
• Maximum imbalance related to size of task

QQ QQ Q

P0 inserts P1 inserts P2 inserts P3 inserts
All processes
insert tasks
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QQ 0 Q2Q1 Q3

All remove tasks P0 removes P1 removes P2 removes P3 removes

(b) Distributed task queues (one per pr ocess)(a) Centralized task queue

Others may steal
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Impact of Dynamic Assignment

On SGI Origin 2000 (cache-coherent shared memory):
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Load Balance and Synch Wait Time

Limit on speedup:  Speedupproblem(p) <  
• Work includes data access and other costs

Sequential Work
Max Work on any Processor

• Work includes data access and other costs
• Not just equal work, but must be busy at same time

Four parts to load balance and reducing synch wait time:

1.  Identify enough concurrency

2.  Decide how to manage it
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3.  Determine the granularity at which to exploit it

4.  Reduce serialization and cost of synchronization

Determining Task Granularity

Task granularity: amount of work associated with a task

General rule:
• Coarse-grained => often less load balance
• Fine-grained => more overhead; often more communication & 

contention

Communication & contention actually affected by 
assignment  not size
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assignment, not size
• Overhead by size itself too, particularly with task queues

Load Balance and Synch Wait Time

Limit on speedup:  Speedupproblem(p) <  
• Work includes data access and other costs

Sequential Work
Max Work on any Processor

• Work includes data access and other costs
• Not just equal work, but must be busy at same time

Four parts to load balance and reducing synch wait time:

1.  Identify enough concurrency

2.  Decide how to manage it
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g

3.  Determine the granularity at which to exploit it

4.  Reduce serialization and cost of synchronization
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Reducing Serialization

Careful about assignment and orchestration (including 
scheduling)

E t h i tiEvent synchronization
• Reduce use of conservative synchronization

– e.g. point-to-point instead of barriers, or granularity of pt-to-pt
• But fine-grained synch more difficult to program, more synch ops. 

Mutual exclusion
• Separate locks for separate data

– e.g. locking records in a database: lock per process, record, or field
– lock per task in task queue, not per queue
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p q p q
– finer grain => less contention/serialization,  more space, less reuse

• Smaller, less frequent critical sections
– don’t do  reading/testing in critical section, only modification
– e.g. searching for task to dequeue in task queue, building tree

• Stagger critical sections in time

Partitioning for Performance

1. Balancing the workload and reducing wait time at synch 
points

2. Reducing inherent communication
3. Reducing extra work
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Reducing Inherent Communication

Communication is expensive! 
Measure: communication to computation ratiop
Focus here on inherent communication

• Determined by assignment of tasks to processes
• Later see that actual communication can be greater

Assign tasks that access same data to same process
Solving communication and  load balance NP-hard in 
general case
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But simple heuristic solutions work well in practice
• Applications have structure!

Domain Decomposition

Works well for scientific, engineering, graphics, ... 
applications

Exploits local-biased nature of physical problems
• Information requirements often short-range
• Or long-range but fall off with distance

Simple example: nearest-neighbor grid computation

P0 P1 P2 P3

P4 P5 P6 P7

n n
p
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Perimeter to Area comm-to-comp ratio (area to volume in 3D)
•Depends on n,p:  decreases with n, increases with p

P8

P12

P9 P11

P13 P14

P10

n n
p

P15
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Domain Decomposition (Continued)

Best domain decomposition depends on information requirements
Nearest neighbor example: block versus strip decomposition

n

P0 P1 P2 P3

P4

P8

P12

P5 P6 P7

P9 P11

P13 P14 P15

P10

n

n

n

p
------

n

p
------
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Comm to comp: for block,  for strip
• Retain block from here on 

Application dependent: strip may be better in other cases
• E.g. particle flow in tunnel

4*√p
n

2*p
n

Finding a Domain Decomposition

Static, by inspection
• Must be predictable: grid example above, and Ocean

Static, but not by inspection
• Input-dependent, require analyzing input structure
• E.g  sparse matrix computations, data mining

Semi-static (periodic repartitioning)
• Characteristics change but slowly; e.g. Barnes-Hut

Static or semi-static, with dynamic task stealing
I iti l d iti  b t hi hl  di t bl    t i
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• Initial decomposition, but highly unpredictable; e.g ray tracing

Other Techniques

Scatter Decomposition, e.g. initial partition in Raytrace
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Preserve locality in task stealing
•Steal large tasks for locality, steal from same queues, ...

Domain decomposition Scatter decomposition

3 4 3 43 4 3 4

Implications of Comm-to-Comp Ratio

If denominator is execution time, ratio gives average BW
needs

If operation count, gives extremes in impact of latency and 
bandwidth
• Latency: assume no latency hiding
• Bandwidth: assume all latency hidden
• Reality is somewhere in between

Actual impact of comm. depends on structure & cost as well
S ti l W k
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• Need to keep communication balanced across processors as well

Sequential Work
Max (Work + Synch Wait Time + Comm Cost)

Speedup <
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Partitioning for Performance

1. Balancing the workload and reducing wait time at synch 
points

2. Reducing inherent communication
3. Reducing extra work
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Reducing Extra Work

Common sources of extra work:
• Computing a good partition

   B H    – e.g. partitioning in Barnes-Hut or sparse matrix
• Using redundant computation to avoid communication
• Task, data and process management overhead

– applications, languages, runtime systems, OS
• Imposing structure on communication

– coalescing messages, allowing effective naming
Architectural Implications:

R d  d b  ki  i ti  d h t ti  ffi i t
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• Reduce need by making communication and orchestration efficient

Sequential Work
Max (Work + Synch Wait Time + Comm Cost + Extra Work)

Speedup <

Summary: Analyzing Parallel Algorithms

Requires characterization of multiprocessor and algorithm
Historical focus on algorithmic aspects: partitioning, g p p g,
mapping

PRAM model: data access and communication are free
• Only load balance (including serialization) and extra work matter

• Useful for early development, but unrealistic for real performance

Sequential Instructions
Max (Instructions + Synch Wait Time + Extra Instructions)

Speedup <
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y p , p
• Ignores communication and also the imbalances it causes
• Can lead to poor choice of partitions as well as orchestration
• More recent models incorporate comm. costs; BSP, LogP, ...

Outline
1. Partitioning for performance

2. Relationship of communication, data locality and p , y
architecture

3. Orchestration for performance
4. Components of execution time as seen by processor

CS 418– 28 –
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Limitations of Algorithm Analysis

Inherent communication in parallel algorithm is not all
• artifactual communication caused by program implementation and   

hit t l i t ti    d i tarchitectural interactions can even dominate
• thus, amount of communication not dealt with adequately

Cost of communication determined not only by amount
• also how communication is structured
• and cost of communication in system

Both architecture-dependent, and addressed in 
orchestration step
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p
To understand techniques, first look at system interactions

What is a Multiprocessor?

A collection of communicating processors
• View taken so far
• Goals: balance load, reduce inherent communication and extra work

A multi-cache, multi-memory system
• Role of these components essential regardless of  programming model
• Programming model  and comm. abstraction affect specific 

performance tradeoffs

Most of remaining performance issues focus on second 
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Most of remaining performance issues focus on second 
aspect

Memory-Oriented View

Multiprocessor as Extended Memory Hierarchy
• as seen by a given processor

Levels in extended hierarchy:
• Registers, caches, local memory, remote memory (topology)
• Glued together by communication architecture
• Levels communicate at a certain granularity of data transfer

Need to exploit spatial and temporal locality in hierarchy
• Otherwise extra communication may also be caused
• Especially important since communication is expensive
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• Especially important since communication is expensive

Uniprocessor

Performance depends heavily on memory hierarchy
Time spent by a programp y p g

Timeprog(1) = Busy(1) + Data Access(1)

• Divide by instructions to get CPI equation

Data access time can be reduced by:
• Optimizing machine: bigger caches, lower latency...
• Optimizing program: temporal and spatial locality
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Optimizing program temporal and spatial locality
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Extended Hierarchy

Idealized view: local cache hierarchy + single main memory
But reality is more complexy p

• Centralized Memory: caches of other processors
• Distributed Memory: some local, some remote; + network topology
• Management of levels

– caches managed by hardware
– main memory depends on programming model

»SAS: data movement between local and remote transparent
»message passing: explicit
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• Levels closer to processor are lower latency and higher bandwidth
• Improve performance through architecture or program locality
• Tradeoff with parallelism; need good node performance and 

parallelism

Artifactual Comm. in Extended Hierarchy

Accesses not satisfied in local portion cause communication
• Inherent communication, implicit or explicit, causes transfers

– determined by program
• Artifactual communication

– determined by program implementation and arch. interactions
– poor allocation of data across distributed memories
– unnecessary data in a transfer
– unnecessary transfers due to system granularities
– redundant communication of data
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– finite replication capacity (in cache or main memory)
• Inherent communication assumes unlimited capacity, small 

transfers, perfect knowledge of what is needed.  
• More on artifactual later; first consider replication-induced 

further

Communication and Replication

Comm. due to finite capacity is most fundamental artifact
• Like cache size and miss rate or memory traffic in uniprocessors
• Extended memory hierarchy view useful for this relationship

View as three level hierarchy for simplicity
• Local cache, local memory, remote memory (ignore network topology)

Classify “misses” in “cache” at any level as for uniprocessors
– compulsory or cold misses (no size effect)
– capacity misses (yes)
– conflict or collision misses (yes)
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– conflict or collision misses (yes)
– communication or coherence misses (no)

• Each may be helped/hurt by large transfer granularity (spatial 
locality)

Working Set Perspective
•At a given level of the hierarchy (to the next further one)

First working setra
ff

ic

First working set

Capacity-generated traffic
(including conflicts)

Second working set

D
at

a 
tr

Other capacity-independent communication

Inherent communication
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• Hierarchy of working sets
• At first level cache (fully assoc, one-word block), inherent to algorithm

– working set curve for program
• Traffic from any type of miss can be local or non-local (communication)

Cold-start (compulsory) traffic

Replication capacity (cache size)
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Outline
1. Partitioning for performance

2. Relationship of communication, data locality and p , y
architecture

3. Orchestration for performance
4. Components of execution time as seen by processor
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Orchestration for Performance

Reducing amount of communication:
• Inherent: change logical data sharing patterns in algorithm
• Artifactual: exploit spatial, temporal locality in extended 

hierarchy
– Techniques often similar to those on uniprocessors

Structuring communication to reduce cost
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Let’s examine techniques for both...

Reducing Artifactual Communication

Message passing model
• Communication and replication are both explicit
• Even artifactual communication is in explicit messages

Shared address space model
• More interesting from an architectural perspective
• Occurs transparently due to interactions of program and system

– sizes and granularities in extended memory  hierarchy
Use shared address space to illustrate issues
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Exploiting Temporal Locality
• Structure algorithm so working sets map well to hierarchy

– often techniques to reduce inherent communication do well here
– schedule tasks for data reuse once assignedg

• Multiple data structures in same phase
– e.g. database records: local versus remote

• Solver example: blocking
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•More useful when O(nk+1) computation on O(nk) data
–many linear algebra computations (factorization, matrix multiply)

(a) Unblocked access pattern in a sweep (b) Blocked access pattern with B = 4
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Exploiting Spatial Locality
Besides capacity, granularities are important:

• Granularity of allocation
Granularity of communication or data transfer• Granularity of communication or data transfer

• Granularity of coherence
Major spatial-related causes of artifactual communication:

• Conflict misses
• Data distribution/layout (allocation granularity)
• Fragmentation (communication granularity)
• False sharing of data (coherence granularity)

All d d  h  i l   i  i h d  
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All depend on how spatial access patterns interact with data 
structures
• Fix problems by modifying data structures, or layout/alignment

Examine later in context of architectures
• one simple example here: data distribution in SAS solver

Spatial Locality Example
• Repeated sweeps over 2-d grid, each time adding 1 to elements
• Natural 2-d versus higher-dimensional array representation

Contiguity in memory layout

P6 P7P4

P8

P0 P1 P2 P3

P5

P0 P3

P5 P6 P7P4

P8

P2P1

Contiguity in memory layout
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Page straddles
partition boundaries:
difficult to distribute 
memory well

Cache block
straddles partition
boundary

(a) Two-dimensional array

Page does not 
straddle partition 
boundary

Cache block is 
within a partition

(b) Four-dimensional array

Tradeoffs with Inherent Communication

Partitioning grid solver: blocks versus rows
• Blocks still have a spatial locality problem on remote data
• Rows can perform better despite worse inherent c-to-c ratio

Good spatial locality on
non-local accesses at
row-oriented boundary

Poor spatial locality on
non-local accesses at
column-oriented boundary
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•Result depends on n and p

Example Performance Impact
Performance measured on an SGI Origin2000
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Structuring Communication
Given amount of communication, goal is to reduce cost
Cost of communication as seen by process:

C  f * (   l          t l )nc/mC = f * ( o + l +        + tc - overlap)
– f = frequency of messages
– o = overhead per message (at both ends)
– l = network delay per message
– nc = total data sent
– m = number of messages
– B = bandwidth along path (determined by network, NI, assist)

  i d d b  i   

nc/m
B
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– tc = cost induced by contention per message
– overlap = amount of latency hidden by overlap with comp. or comm.

• Portion in parentheses is cost of a message (as seen by processor)
• That portion, ignoring overlap, is latency of a message

• Goal: reduce terms in latency and increase overlap

Reducing Overhead

Can reduce # of messages m or overhead per message o
o is usually determined by hardware or system softwarey y y

• Program should try to reduce m by coalescing messages
• More control when communication is explicit

Coalescing data into larger messages:
• Easy for regular, coarse-grained communication
• Can be difficult for irregular, naturally fine-grained communication

– may require changes to algorithm and extra work 
»coalescing data and determining what and to whom to send
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»coalescing data and determining what and to whom to send
– will discuss more in implications for programming models later

Reducing Network Delay

Network delay component = f*h*th
– h = number of hops traversed in network
– th = link+switch latency per hop

Reducing f: communicate less, or make messages larger
Reducing h:

• Map communication patterns to network topology
– e.g. nearest-neighbor on mesh and ring; all-to-all

• How important is this?
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p
– used to be major focus of parallel algorithms
– depends on no. of processors, how th, compares with other components
– less important on modern machines

»overheads, processor count, multiprogramming

Reducing Contention

All resources have nonzero occupancy
• Memory, communication controller, network link, etc.
• Can only handle so many transactions per unit time

Effects of contention:
• Increased end-to-end cost for messages
• Reduced available bandwidth for individual messages
• Causes imbalances across processors

Particularly insidious performance problem
• Easy to ignore when programming
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y g p g g
• Slow down messages that don’t even need that resource

– by causing other dependent resources to also congest
• Effect can be devastating:  Don’t flood a resource!
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Types of Contention
Network contention and end-point contention (hot-spots)
Location and Module Hot-spots
Location: e g  accumulating into global variable  barrierLocation: e.g. accumulating into global variable, barrier

• solution: tree-structured communication

Flat Tree structured

Contention Little contention
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•In general, reduce burstiness; may conflict with making messages 
larger

Module: all-to-all personalized comm. in matrix transpose
•solution: stagger access by different processors to same node 
temporally

Overlapping Communication

Cannot afford to stall for high latencies
• even on uniprocessors!

Overlap with computation or communication to hide latency
Requires extra concurrency (slackness), higher bandwidth
Techniques:

• Prefetching
• Block data transfer
• Proceeding past communication

M ltith di
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• Multithreading

Summary of Tradeoffs

Different goals often have conflicting demands
• Load Balance

– fine-grain tasks
– random or dynamic assignment

• Communication
– usually coarse grain tasks
– decompose to obtain locality:  not random/dynamic

• Extra Work
– coarse grain tasks
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– simple assignment
• Communication Cost:

– big transfers: amortize overhead and latency
– small transfers: reduce contention

Outline
1. Partitioning for performance

2. Relationship of communication, data locality and p , y
architecture

3. Orchestration for performance
4. Components of execution time as seen by processor

• What workload looks like to architecture
• Relate to software issues

CS 418– 52 –
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Processor-Centric Perspective
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Relationship between Perspectives

Synch wait

Performance issueParallelization step(s) Processor time component

Decomposition/
assignment/

Load imbalance and 
synchronization

Data-remote

Data-local

Busy-overheadExtra workDecomposition/
assignment

assignment/
orchestration

synchronization

Decomposition/
assignment

Inherent
communication 
volume

Orchestration Artifactual 
i ti
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communication 
and data locality

Orchestration/
mapping

Communication 
structure

Summary

Speedupprob(p) = Busy(1) + Data(1)
Busyuseful(p)+Datalocal(p)+Synch(p)+Dataremote(p)+Busyoverhead(p)

• Goal is to reduce denominator components
• Both programmer and system have role to play
• Architecture cannot do much about load imbalance or too much 

communication
• But it can:

– reduce incentive for creating ill-behaved programs (efficient naming, 
communication and synchronization)

– reduce artifactual communication
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– provide efficient naming for flexible assignment
– allow effective overlapping of communication 


