
Page 1

Parallel Programming:
PerformancePerformance

Todd C. Mowry
CS 418

January 20, 25 & 26, 2011January , 5 & 6,

Introduction

Rich space of techniques and issues
• Trade off and interact with one another

Issues can be addressed/helped by software or hardware
• Algorithmic or programming techniques
• Architectural techniques

Focus here on performance issues and software techniques
• Point out some architectural implications
• Architectural techniques covered in rest of class

CS 418– 2 –

Programming as Successive Refinement
Not all issues dealt with up front
Partitioning often independent of architecture, and done first

• View machine as a collection of communicating processors• View machine as a collection of communicating processors
– balancing the workload
– reducing the amount of inherent communication
– reducing extra work

• Tug-o-war even among these three issues
Then interactions with architecture

• View machine as extended memory hierarchy
 d h l

CS 418– 3 –

– extra communication due to architectural interactions
– cost of communication depends on how it is structured

• May inspire changes in partitioning
Discussion of issues is one at a time, but identifies tradeoffs

• Use examples, and measurements on SGI Origin2000

Outline
1. Partitioning for performance

2. Relationship of communication, data locality and p , y
architecture

3. Orchestration for performance

For each issue:
• Techniques to address it, and tradeoffs with previous issues
• Illustration using case studies
• Application to grid solver

CS 418– 4 –

pp g
• Some architectural implications

4. Components of execution time as seen by processor
• What workload looks like to architecture, and relate to software

issues

Page 2

Partitioning for Performance

1. Balancing the workload and reducing wait time at synch
points

2. Reducing inherent communication
3. Reducing extra work

Even these algorithmic issues trade off:
• Minimize comm. => run on 1 processor => extreme load imbalance
• Maximize load balance => random assignment of tiny tasks => no

control over communication

CS 418– 5 –

control over communication
• Good partition may imply extra work to compute or manage it

Goal is to compromise
• Fortunately, often not difficult in practice

Load Balance and Synch Wait Time

Limit on speedup: Speedupproblem(p) <

• Work includes data access and other costs

Sequential Work
Max Work on any Processor

• Work includes data access and other costs
• Not just equal work, but must be busy at same time

Four parts to load balance and reducing synch wait time:

1. Identify enough concurrency

2. Decide how to manage it

CS 418– 6 –

g

3. Determine the granularity at which to exploit it

4. Reduce serialization and cost of synchronization

Identifying Concurrency
Techniques seen for equation solver:

• Loop structure, fundamental dependences, new algorithms
Data Parallelism versus Function ParallelismData Parallelism versus Function Parallelism
Often see orthogonal levels of parallelism; e.g. VLSI routing

Wire W2 expands to segments

W1 W2 W3

(a)

CS 418– 7 –

Segment S23 expands to routes

S21 S22 S23 S24 S25 S26

(b)

(c)

Identifying Concurrency (contd.)

Function parallelism:
• entire large tasks (procedures) that can be done in parallel
• on same or different data
• e.g. different independent grid computations in Ocean
• pipelining, as in video encoding/decoding, or polygon rendering
• degree usually modest and does not grow with input size
• difficult to load balance
• often used to reduce synch between data parallel phases

CS 418– 8 –

Most scalable programs data parallel (per this loose
definition)
• function parallelism reduces synch between data parallel phases

Page 3

Load Balance and Synch Wait Time

Limit on speedup: Speedupproblem(p) <
• Work includes data access and other costs

Sequential Work
Max Work on any Processor

• Work includes data access and other costs
• Not just equal work, but must be busy at same time

Four parts to load balance and reducing synch wait time:

1. Identify enough concurrency

2. Decide how to manage it

CS 418– 9 –

g

3. Determine the granularity at which to exploit it

4. Reduce serialization and cost of synchronization

Deciding How to Manage Concurrency

Static versus Dynamic techniques
Static:

• Algorithmic assignment based on input; won’t change
• Low runtime overhead
• Computation must be predictable
• Preferable when applicable (except in multiprogrammed or

heterogeneous environment)
Dynamic:

• Adapt at runtime to balance load

CS 418– 10 –

p un m n
• Can increase communication and reduce locality
• Can increase task management overheads

Dynamic Assignment

Profile-based (semi-static):
• Profile work distribution at runtime, and repartition dynamically
• Applicable in many computations, e.g. Barnes-Hut, some graphics

Dynamic Tasking:
• Deal with unpredictability in program or environment (e.g.

Raytrace)
– computation, communication, and memory system interactions
– multiprogramming and heterogeneity

CS 418– 11 –

p g g g y
– used by runtime systems and OS too

• Pool of tasks; take and add tasks until done
• E.g. “self-scheduling” of loop iterations (shared loop counter)

Dynamic Tasking with Task Queues

Centralized versus distributed queues
Task stealing with distributed queuesg q

• Can compromise comm and locality, and increase synchronization
• Whom to steal from, how many tasks to steal, ...
• Termination detection
• Maximum imbalance related to size of task

QQ QQ Q

P0 inserts P1 inserts P2 inserts P3 inserts
All processes
insert tasks

CS 418– 12 –

QQ 0 Q2Q1 Q3

All remove tasks P0 removes P1 removes P2 removes P3 removes

(b) Distributed task queues (one per pr ocess)(a) Centralized task queue

Others may steal

Page 4

Impact of Dynamic Assignment

On SGI Origin 2000 (cache-coherent shared memory):

30 30  Origin, dynamic Origin, semistatic

S
pe

ed
up

















10

15

S
pe

ed
up

20

25

30

10

15

20

25

30

















g , y
 Challenge, dynamic
 Origin, static
 Challenge, static

g
 Challenge, semistatic
 Origin, static
 Challenge, static

CS 418– 13 –

























1 3 5 7 9 11 13 15 17

Number of processors Number of processors

19 21 23 25 27 29 31
0

5

10

0(a) (b)

5

10



























1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Barnes-Hut Raytrace

Load Balance and Synch Wait Time

Limit on speedup: Speedupproblem(p) <
• Work includes data access and other costs

Sequential Work
Max Work on any Processor

• Work includes data access and other costs
• Not just equal work, but must be busy at same time

Four parts to load balance and reducing synch wait time:

1. Identify enough concurrency

2. Decide how to manage it

CS 418– 14 –

g

3. Determine the granularity at which to exploit it

4. Reduce serialization and cost of synchronization

Determining Task Granularity

Task granularity: amount of work associated with a task

General rule:
• Coarse-grained => often less load balance
• Fine-grained => more overhead; often more communication &

contention

Communication & contention actually affected by
assignment not size

CS 418– 15 –

assignment, not size
• Overhead by size itself too, particularly with task queues

Load Balance and Synch Wait Time

Limit on speedup: Speedupproblem(p) <
• Work includes data access and other costs

Sequential Work
Max Work on any Processor

• Work includes data access and other costs
• Not just equal work, but must be busy at same time

Four parts to load balance and reducing synch wait time:

1. Identify enough concurrency

2. Decide how to manage it

CS 418– 16 –

g

3. Determine the granularity at which to exploit it

4. Reduce serialization and cost of synchronization

Page 5

Reducing Serialization

Careful about assignment and orchestration (including
scheduling)

E t h i tiEvent synchronization
• Reduce use of conservative synchronization

– e.g. point-to-point instead of barriers, or granularity of pt-to-pt
• But fine-grained synch more difficult to program, more synch ops.

Mutual exclusion
• Separate locks for separate data

– e.g. locking records in a database: lock per process, record, or field
– lock per task in task queue, not per queue

CS 418– 17 –

p q p q
– finer grain => less contention/serialization, more space, less reuse

• Smaller, less frequent critical sections
– don’t do reading/testing in critical section, only modification
– e.g. searching for task to dequeue in task queue, building tree

• Stagger critical sections in time

Partitioning for Performance

1. Balancing the workload and reducing wait time at synch
points

2. Reducing inherent communication
3. Reducing extra work

CS 418– 18 –

Reducing Inherent Communication

Communication is expensive!
Measure: communication to computation ratiop
Focus here on inherent communication

• Determined by assignment of tasks to processes
• Later see that actual communication can be greater

Assign tasks that access same data to same process
Solving communication and load balance NP-hard in
general case

CS 418– 19 –

But simple heuristic solutions work well in practice
• Applications have structure!

Domain Decomposition

Works well for scientific, engineering, graphics, ...
applications

Exploits local-biased nature of physical problems
• Information requirements often short-range
• Or long-range but fall off with distance

Simple example: nearest-neighbor grid computation

P0 P1 P2 P3

P4 P5 P6 P7

n n
p

CS 418– 20 –

Perimeter to Area comm-to-comp ratio (area to volume in 3D)
•Depends on n,p: decreases with n, increases with p

P8

P12

P9 P11

P13 P14

P10

n n
p

P15

Page 6

Domain Decomposition (Continued)

Best domain decomposition depends on information requirements
Nearest neighbor example: block versus strip decomposition

n

P0 P1 P2 P3

P4

P8

P12

P5 P6 P7

P9 P11

P13 P14 P15

P10

n

n

n

p

n

p

CS 418– 21 –

Comm to comp: for block, for strip
• Retain block from here on

Application dependent: strip may be better in other cases
• E.g. particle flow in tunnel

4*√p
n

2*p
n

Finding a Domain Decomposition

Static, by inspection
• Must be predictable: grid example above, and Ocean

Static, but not by inspection
• Input-dependent, require analyzing input structure
• E.g sparse matrix computations, data mining

Semi-static (periodic repartitioning)
• Characteristics change but slowly; e.g. Barnes-Hut

Static or semi-static, with dynamic task stealing
I iti l d iti b t hi hl di t bl t i

CS 418– 22 –

• Initial decomposition, but highly unpredictable; e.g ray tracing

Other Techniques

Scatter Decomposition, e.g. initial partition in Raytrace
1 2 1 21 2 1 2

1

43

2

1

3 4

2

1

3 4

2

1

3 4

2

1 2

1

3 4

2

1

3 4

2

1

3 4

2

1 2

1

3 4

2

1

3 4

2

1

3 4

2

1 2

1

3 4

2

1

3 4

2

1

3 4

2

1 2

CS 418– 23 –

Preserve locality in task stealing
•Steal large tasks for locality, steal from same queues, ...

Domain decomposition Scatter decomposition

3 4 3 43 4 3 4

Implications of Comm-to-Comp Ratio

If denominator is execution time, ratio gives average BW
needs

If operation count, gives extremes in impact of latency and
bandwidth
• Latency: assume no latency hiding
• Bandwidth: assume all latency hidden
• Reality is somewhere in between

Actual impact of comm. depends on structure & cost as well
S ti l W k

CS 418– 24 –

• Need to keep communication balanced across processors as well

Sequential Work
Max (Work + Synch Wait Time + Comm Cost)

Speedup <

Page 7

Partitioning for Performance

1. Balancing the workload and reducing wait time at synch
points

2. Reducing inherent communication
3. Reducing extra work

CS 418– 25 –

Reducing Extra Work

Common sources of extra work:
• Computing a good partition

 B H – e.g. partitioning in Barnes-Hut or sparse matrix
• Using redundant computation to avoid communication
• Task, data and process management overhead

– applications, languages, runtime systems, OS
• Imposing structure on communication

– coalescing messages, allowing effective naming
Architectural Implications:

R d d b ki i ti d h t ti ffi i t

CS 418– 26 –

• Reduce need by making communication and orchestration efficient

Sequential Work
Max (Work + Synch Wait Time + Comm Cost + Extra Work)

Speedup <

Summary: Analyzing Parallel Algorithms

Requires characterization of multiprocessor and algorithm
Historical focus on algorithmic aspects: partitioning, g p p g,
mapping

PRAM model: data access and communication are free
• Only load balance (including serialization) and extra work matter

• Useful for early development, but unrealistic for real performance

Sequential Instructions
Max (Instructions + Synch Wait Time + Extra Instructions)

Speedup <

CS 418– 27 –

y p , p
• Ignores communication and also the imbalances it causes
• Can lead to poor choice of partitions as well as orchestration
• More recent models incorporate comm. costs; BSP, LogP, ...

Outline
1. Partitioning for performance

2. Relationship of communication, data locality and p , y
architecture

3. Orchestration for performance
4. Components of execution time as seen by processor

CS 418– 28 –

Page 8

Limitations of Algorithm Analysis

Inherent communication in parallel algorithm is not all
• artifactual communication caused by program implementation and

hit t l i t ti d i tarchitectural interactions can even dominate
• thus, amount of communication not dealt with adequately

Cost of communication determined not only by amount
• also how communication is structured
• and cost of communication in system

Both architecture-dependent, and addressed in
orchestration step

CS 418– 29 –

p
To understand techniques, first look at system interactions

What is a Multiprocessor?

A collection of communicating processors
• View taken so far
• Goals: balance load, reduce inherent communication and extra work

A multi-cache, multi-memory system
• Role of these components essential regardless of programming model
• Programming model and comm. abstraction affect specific

performance tradeoffs

Most of remaining performance issues focus on second

CS 418– 30 –

Most of remaining performance issues focus on second
aspect

Memory-Oriented View

Multiprocessor as Extended Memory Hierarchy
• as seen by a given processor

Levels in extended hierarchy:
• Registers, caches, local memory, remote memory (topology)
• Glued together by communication architecture
• Levels communicate at a certain granularity of data transfer

Need to exploit spatial and temporal locality in hierarchy
• Otherwise extra communication may also be caused
• Especially important since communication is expensive

CS 418– 31 –

• Especially important since communication is expensive

Uniprocessor

Performance depends heavily on memory hierarchy
Time spent by a programp y p g

Timeprog(1) = Busy(1) + Data Access(1)

• Divide by instructions to get CPI equation

Data access time can be reduced by:
• Optimizing machine: bigger caches, lower latency...
• Optimizing program: temporal and spatial locality

CS 418– 32 –

Optimizing program temporal and spatial locality

Page 9

Extended Hierarchy

Idealized view: local cache hierarchy + single main memory
But reality is more complexy p

• Centralized Memory: caches of other processors
• Distributed Memory: some local, some remote; + network topology
• Management of levels

– caches managed by hardware
– main memory depends on programming model

»SAS: data movement between local and remote transparent
»message passing: explicit

CS 418– 33 –

• Levels closer to processor are lower latency and higher bandwidth
• Improve performance through architecture or program locality
• Tradeoff with parallelism; need good node performance and

parallelism

Artifactual Comm. in Extended Hierarchy

Accesses not satisfied in local portion cause communication
• Inherent communication, implicit or explicit, causes transfers

– determined by program
• Artifactual communication

– determined by program implementation and arch. interactions
– poor allocation of data across distributed memories
– unnecessary data in a transfer
– unnecessary transfers due to system granularities
– redundant communication of data

CS 418– 34 –

– finite replication capacity (in cache or main memory)
• Inherent communication assumes unlimited capacity, small

transfers, perfect knowledge of what is needed.
• More on artifactual later; first consider replication-induced

further

Communication and Replication

Comm. due to finite capacity is most fundamental artifact
• Like cache size and miss rate or memory traffic in uniprocessors
• Extended memory hierarchy view useful for this relationship

View as three level hierarchy for simplicity
• Local cache, local memory, remote memory (ignore network topology)

Classify “misses” in “cache” at any level as for uniprocessors
– compulsory or cold misses (no size effect)
– capacity misses (yes)
– conflict or collision misses (yes)

CS 418– 35 –

– conflict or collision misses (yes)
– communication or coherence misses (no)

• Each may be helped/hurt by large transfer granularity (spatial
locality)

Working Set Perspective
•At a given level of the hierarchy (to the next further one)

First working setra
ff

ic

First working set

Capacity-generated traffic
(including conflicts)

Second working set

D
at

a
tr

Other capacity-independent communication

Inherent communication

CS 418– 36 –

• Hierarchy of working sets
• At first level cache (fully assoc, one-word block), inherent to algorithm

– working set curve for program
• Traffic from any type of miss can be local or non-local (communication)

Cold-start (compulsory) traffic

Replication capacity (cache size)

Page 10

Outline
1. Partitioning for performance

2. Relationship of communication, data locality and p , y
architecture

3. Orchestration for performance
4. Components of execution time as seen by processor

CS 418– 37 –

Orchestration for Performance

Reducing amount of communication:
• Inherent: change logical data sharing patterns in algorithm
• Artifactual: exploit spatial, temporal locality in extended

hierarchy
– Techniques often similar to those on uniprocessors

Structuring communication to reduce cost

CS 418– 38 –

Let’s examine techniques for both...

Reducing Artifactual Communication

Message passing model
• Communication and replication are both explicit
• Even artifactual communication is in explicit messages

Shared address space model
• More interesting from an architectural perspective
• Occurs transparently due to interactions of program and system

– sizes and granularities in extended memory hierarchy
Use shared address space to illustrate issues

CS 418– 39 –

Exploiting Temporal Locality
• Structure algorithm so working sets map well to hierarchy

– often techniques to reduce inherent communication do well here
– schedule tasks for data reuse once assignedg

• Multiple data structures in same phase
– e.g. database records: local versus remote

• Solver example: blocking

CS 418– 40 –

•More useful when O(nk+1) computation on O(nk) data
–many linear algebra computations (factorization, matrix multiply)

(a) Unblocked access pattern in a sweep (b) Blocked access pattern with B = 4

Page 11

Exploiting Spatial Locality
Besides capacity, granularities are important:

• Granularity of allocation
Granularity of communication or data transfer• Granularity of communication or data transfer

• Granularity of coherence
Major spatial-related causes of artifactual communication:

• Conflict misses
• Data distribution/layout (allocation granularity)
• Fragmentation (communication granularity)
• False sharing of data (coherence granularity)

All d d h i l i i h d

CS 418– 41 –

All depend on how spatial access patterns interact with data
structures
• Fix problems by modifying data structures, or layout/alignment

Examine later in context of architectures
• one simple example here: data distribution in SAS solver

Spatial Locality Example
• Repeated sweeps over 2-d grid, each time adding 1 to elements
• Natural 2-d versus higher-dimensional array representation

Contiguity in memory layout

P6 P7P4

P8

P0 P1 P2 P3

P5

P0 P3

P5 P6 P7P4

P8

P2P1

Contiguity in memory layout

CS 418– 42 –

Page straddles
partition boundaries:
difficult to distribute
memory well

Cache block
straddles partition
boundary

(a) Two-dimensional array

Page does not
straddle partition
boundary

Cache block is
within a partition

(b) Four-dimensional array

Tradeoffs with Inherent Communication

Partitioning grid solver: blocks versus rows
• Blocks still have a spatial locality problem on remote data
• Rows can perform better despite worse inherent c-to-c ratio

Good spatial locality on
non-local accesses at
row-oriented boundary

Poor spatial locality on
non-local accesses at
column-oriented boundary

CS 418– 43 –

•Result depends on n and p

Example Performance Impact
Performance measured on an SGI Origin2000

30 50
4D Rows

S
pe

ed
up

S
pe

ed
up












10

15

20

25































15

20

25

30

35

40

45
4D
4D-rr

 2D-rr
 2D
 Rows-rr
 Rows 2D

 4D
 Rows

CS 418– 44 –

Number of processors Number of processors



















1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
0

5











 














1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
0

5

10

Ocean, 514x514 grids Solver Kernel, 12K x 12K grid

Page 12

Structuring Communication
Given amount of communication, goal is to reduce cost
Cost of communication as seen by process:

C f * (l t l)nc/mC = f * (o + l + + tc - overlap)
– f = frequency of messages
– o = overhead per message (at both ends)
– l = network delay per message
– nc = total data sent
– m = number of messages
– B = bandwidth along path (determined by network, NI, assist)

 i d d b i

nc/m
B

CS 418– 45 –

– tc = cost induced by contention per message
– overlap = amount of latency hidden by overlap with comp. or comm.

• Portion in parentheses is cost of a message (as seen by processor)
• That portion, ignoring overlap, is latency of a message

• Goal: reduce terms in latency and increase overlap

Reducing Overhead

Can reduce # of messages m or overhead per message o
o is usually determined by hardware or system softwarey y y

• Program should try to reduce m by coalescing messages
• More control when communication is explicit

Coalescing data into larger messages:
• Easy for regular, coarse-grained communication
• Can be difficult for irregular, naturally fine-grained communication

– may require changes to algorithm and extra work
»coalescing data and determining what and to whom to send

CS 418– 46 –

»coalescing data and determining what and to whom to send
– will discuss more in implications for programming models later

Reducing Network Delay

Network delay component = f*h*th
– h = number of hops traversed in network
– th = link+switch latency per hop

Reducing f: communicate less, or make messages larger
Reducing h:

• Map communication patterns to network topology
– e.g. nearest-neighbor on mesh and ring; all-to-all

• How important is this?

CS 418– 47 –

p
– used to be major focus of parallel algorithms
– depends on no. of processors, how th, compares with other components
– less important on modern machines

»overheads, processor count, multiprogramming

Reducing Contention

All resources have nonzero occupancy
• Memory, communication controller, network link, etc.
• Can only handle so many transactions per unit time

Effects of contention:
• Increased end-to-end cost for messages
• Reduced available bandwidth for individual messages
• Causes imbalances across processors

Particularly insidious performance problem
• Easy to ignore when programming

CS 418– 48 –

y g p g g
• Slow down messages that don’t even need that resource

– by causing other dependent resources to also congest
• Effect can be devastating: Don’t flood a resource!

Page 13

Types of Contention
Network contention and end-point contention (hot-spots)
Location and Module Hot-spots
Location: e g accumulating into global variable barrierLocation: e.g. accumulating into global variable, barrier

• solution: tree-structured communication

Flat Tree structured

Contention Little contention

CS 418– 49 –

•In general, reduce burstiness; may conflict with making messages
larger

Module: all-to-all personalized comm. in matrix transpose
•solution: stagger access by different processors to same node
temporally

Overlapping Communication

Cannot afford to stall for high latencies
• even on uniprocessors!

Overlap with computation or communication to hide latency
Requires extra concurrency (slackness), higher bandwidth
Techniques:

• Prefetching
• Block data transfer
• Proceeding past communication

M ltith di

CS 418– 50 –

• Multithreading

Summary of Tradeoffs

Different goals often have conflicting demands
• Load Balance

– fine-grain tasks
– random or dynamic assignment

• Communication
– usually coarse grain tasks
– decompose to obtain locality: not random/dynamic

• Extra Work
– coarse grain tasks

CS 418– 51 –

– simple assignment
• Communication Cost:

– big transfers: amortize overhead and latency
– small transfers: reduce contention

Outline
1. Partitioning for performance

2. Relationship of communication, data locality and p , y
architecture

3. Orchestration for performance
4. Components of execution time as seen by processor

• What workload looks like to architecture
• Relate to software issues

CS 418– 52 –

Page 14

Processor-Centric Perspective

CS 418– 53 –

Relationship between Perspectives

Synch wait

Performance issueParallelization step(s) Processor time component

Decomposition/
assignment/

Load imbalance and
synchronization

Data-remote

Data-local

Busy-overheadExtra workDecomposition/
assignment

assignment/
orchestration

synchronization

Decomposition/
assignment

Inherent
communication
volume

Orchestration Artifactual
i ti

CS 418– 54 –

communication
and data locality

Orchestration/
mapping

Communication
structure

Summary

Speedupprob(p) = Busy(1) + Data(1)
Busyuseful(p)+Datalocal(p)+Synch(p)+Dataremote(p)+Busyoverhead(p)

• Goal is to reduce denominator components
• Both programmer and system have role to play
• Architecture cannot do much about load imbalance or too much

communication
• But it can:

– reduce incentive for creating ill-behaved programs (efficient naming,
communication and synchronization)

– reduce artifactual communication

CS 418– 55 –

– provide efficient naming for flexible assignment
– allow effective overlapping of communication

