
Page 1

Parallel Programming:
Case StudiesCase Studies

Todd C. Mowry
CS 418

January 27, 2011

Parallel Application Case Studies

Examine Ocean and Barnes-Hut (others in book)
Assume cache-coherent shared address spacep
Five parts for each application

• Sequential algorithms and data structures
• Partitioning
• Orchestration
• Mapping
• Components of execution time on SGI Origin2000

CS 418– 2 –

Case 1: Simulating Ocean Currents

• Model as two dimensional grids

(a) Cross sections (b) Spatial discretization of a cross section

CS 418– 3 –

• Model as two-dimensional grids
• Discretize in space and time

– finer spatial and temporal resolution => greater
accuracy

• Many different computations per time step
– set up and solve equations

• Concurrency across and within grid computations

Time Step in Ocean Simulation
 Put Laplacian

of 1 in W11

Add f values to columns
of W1 and W1

 Put Laplacian
of 3 in W13

Copy 1, 3
into T1, T3

Copy 1M, 3M
into  

Put 1 3
in W2

Put computed 2
values in W3

 Initialize
a and b

 Put Laplacian of
  in W7of W11 and W13

Update the  expressions

Solve the equation for a and put the result in a

Put Jacobians of (W1, T1),
(W13, T3) in W51, W53

into 1, 3

Copy T1, T3
into 1M, 3M

1M, 3M in W71,3

 Put Laplacian of
W71,3 in W41,3

 Put Laplacian of
W41,3 in W71,3

 Put Jacobian of
(W2,W3) in W6

CS 418– 4 –

Compute the integral of a

Use and to update 1 and  

Update streamfunction running sums and determine whether to end program

Compute a + C(t) b (Note: a
and now  are maintained in a matrix)

Solve the equation for  and put result in b

Page 2

Partitioning

Exploit data parallelism
• Function parallelism only to reduce synchronization• Function parallelism only to reduce synchronization

Static partitioning within a grid computation
• Block versus strip

– inherent communication versus spatial locality in communication
• Load imbalance due to border elements and number of boundaries

Solver has greater overheads than other computations

CS 418– 5 –

Two Static Partitioning Schemes

CS 418– 6 –

Which approach is better?

Strip Block

Orchestration and Mapping

Spatial locality similar to equation solver
• Except lots of grids, so cache conflicts across grids

Complex working set hierarchy
• A few points for near-neighbor reuse, three subrows, partition of

one grid, partitions of multiple grids…
• First three or four most important
• Large working sets, but data distribution easy

Synchronization
• Barriers between phases and solver sweeps

CS 418– 7 –

p p
• Locks for global variables
• Lots of work between synchronization events

Mapping: easy mapping to 2-d array topology or richer

Execution Time Breakdown
•1030 x 1030 grids with block partitioning on 32-processor Origin2000

7 7 B
Synch
Data

B
Synch
Data

4D Grids 2D Grids

Ti
m

e
 (s

)

Process

13579 11 13 15 17 19 21 23 25 27 29 31
0
1
2
3

4
5
6
7

Ti
m

e
 (s

)

Process

13579 11 13 15 17 19 21 23 25 27 29 31
0
1

2
3
4

5

7
6

BusyBusy

CS 418– 8 –

• 4D grids much better than 2D, despite very large caches on machine
– data distribution is much more crucial on machines with smaller caches

• Major bottleneck in this configuration is time waiting at barriers
– imbalance in memory stall times as well

Page 3

Impact of Line Size & Data Distribution

CS 418– 9 –

no-alloc = round-robin page allocation; otherwise, data assigned to local
memory. L = cache line size.

Case 2: Simulating Galaxy Evolution

• Simulate the interactions of many stars evolving over time
• Computing forces is expensive

(2) b f h• O(n2) brute force approach
• Hierarchical Methods take advantage of force law: G m1m2

r2
Star on which forces
are being computed Large group far

enough away to
approximate

CS 418– 10 –

•Many time-steps, plenty of concurrency across stars within one

Star too close to
approximate

Small group far enough away to
approximate to center of mass

Barnes-Hut

CS 418– 11 –

Locality Goal:
• particles close together in space should be on same processor

Difficulties:
• nonuniform, dynamically changing

Application Structure

Build tree

Compute
forces

Update
properties

Ti
m

e-
st

ep
s

Compute
moments of cells

Traverse tree
to compute forces

CS 418– 12 –

• Main data structures: array of bodies, of cells, and of pointers to them
– Each body/cell has several fields: mass, position, pointers to others
– pointers are assigned to processes

Page 4

Partitioning

Decomposition: bodies in most phases, cells in computing
moments

Challenges for assignment:
• Nonuniform body distribution => work and comm. Nonuniform

– Cannot assign by inspection
• Distribution changes dynamically across time-steps

– Cannot assign statically
• Information needs fall off with distance from body

– Partitions should be spatially contiguous for locality

CS 418– 13 –

p y g y
• Different phases have different work distributions across bodies

– No single assignment ideal for all
– Focus on force calculation phase

• Communication needs naturally fine-grained and irregular

Load Balancing

Equal particles  equal work.

• Solution: Assign costs to particles based on the work they do

Work unknown and changes with time-steps

• Insight : System evolves slowly

• Solution: Count work per particle, and use as cost for next
time step

CS 418– 14 –

time-step.

Powerful technique for evolving physical systems

A Partitioning Approach: ORB
Orthogonal Recursive Bisection:

• Recursively bisect space into subspaces with equal work
– Work is associated with bodies, as before, f

• Continue until one partition per processor

CS 418– 15 –

• High overhead for large number of processors

Another Approach: Costzones

Insight: Tree already contains an encoding of spatial locality.

CS 418– 16 –

• Costzones is low-overhead and very easy to program

(a) ORB (b) Costzones

P1 P2 P3 P4 P5 P6 P7 P8

Page 5

Barnes-Hut Performance
Ideal
Costzones

ORB

CS 418– 17 –

• Speedups on simulated multiprocessor
• Extra work in ORB is the key difference

Orchestration and Mapping
Spatial locality: Very different than in Ocean, like other aspects

• Data distribution is much more difficult
– Redistribution across time-stepsRedistribution across time steps
– Logical granularity (body/cell) much smaller than page
– Partitions contiguous in physical space does not imply contiguous in array
– But, good temporal locality, and most misses logically non-local anyway

• Long cache blocks help within body/cell record, not entire partition

Temporal locality and working sets:
• Important working set scales as 1/2log n
• Slow growth rate, and fits in second-level caches, unlike Ocean

CS 418– 18 –

Synchronization:
• Barriers between phases
• No synch within force calculation: data written different from data read
• Locks in tree-building, pt. to pt. event synch in center of mass phase

Mapping: ORB maps well to hypercube, costzones to linear array

Execution Time Breakdown

•512K bodies on 32-processor Origin2000
–Static, quite randomized in space, assignment of bodies versus costzones

Ti
m

e
 (s

)

Data
Synch
Busy

Data
Synch
Busy

5
10
15
20
25
30
35
40

Ti
m

e
 (s

)

5
10
15
20
25
30
35
40

CS 418– 19 –

•Problem with static case is communication/locality, not load balance!

Process

13579 11 13 15 17 19 21 23 25 27 29 31
0
5

Process

13579 11 13 15 17 19 21 23 25 27 29 31
0
5

(a) Static assignment of bodies (b) Semistatic costzone assignment

Case 3: Raytrace

Rays shot through pixels in image are called primary rays
• Reflect and refract when they hit objects
• Recursive process generates ray tree per primary ray

Hierarchical spatial data structure keeps track of
primitives in scene
• Nodes are space cells, leaves have linked list of primitives

Tradeoffs between execution time and image quality

CS 418– 20 –

Page 6

Partitioning
Scene-oriented approach

• Partition scene cells, process rays while they are in an assigned cell
Ray-oriented approach Ray-oriented approach

• Partition primary rays (pixels), access scene data as needed
• Simpler; used here

Need dynamic assignment; use contiguous blocks to exploit
spatial coherence among neighboring rays, plus tiles for
task stealing

A til

CS 418– 21 –

A block,
the unit of
assignment

A tile,
the unit of decomposition
and stealing

Could use 2-D interleaved (scatter) assignment of tiles instead

Orchestration and Mapping

Spatial locality
• Proper data distribution for ray-oriented approach very difficult

D i ll h i di t bl fi i d • Dynamically changing, unpredictable access, fine-grained access
• Better spatial locality on image data than on scene data

– Strip partition would do better, but less spatial coherence in scene
access

Temporal locality
• Working sets much larger and more diffuse than Barnes-Hut
• But still a lot of reuse in modern second-level caches

– SAS program does not replicate in main memory

CS 418– 22 –

p g p y
Synchronization:

• One barrier at end, locks on task queues
Mapping: natural to 2-d mesh for image, but likely not
important

Execution Time Breakdown

200 200Data

With task stealing Without task stealing

Ti
m

e
 (s

)

13579 11 13 15 17 19 21 23 25 27 29 31

Ti
m

e
 (s

)

13579 11 13 15 17 19 21 23 25 27 29 31

20
40

0

60
80

100
120
140

180
200

160

20
40

0

60
80

100
120
140

180
200

160
Synch
Busy

CS 418– 23 –

• Task stealing clearly very important for load balance

Process Process

