Parallel Programming: Case Studies

Todd C. Mowry CS 418 January 27, 2011

Parallel Application Case Studies

Examine Ocean and Barnes-Hut (others in book)
Assume cache-coherent shared address space
Five parts for each application

- · Sequential algorithms and data structures
- · Partitioning
- · Orchestration
- Mapping
- Components of execution time on SGI Origin2000

Case 1: Simulating Ocean Currents

(a) Cross sections (b) Spatial discretization of a cross section

Model as two-dimensional grids
Discretize in space and time
- finer spatial and temporal resolution => greater accuracy
Many different computations per time step
- set up and solve equations
Concurrency across and within grid computations

Time Step in Ocean Simulation Put Laplacian of \(\psi_1 \) into \(\psi_1 \), \(\psi_3 \) into \(\psi_1 \), \(\psi_1

CS 418

Partitioning

Exploit data parallelism

· Function parallelism only to reduce synchronization

Static partitioning within a grid computation

- · Block versus strip
 - inherent communication versus spatial locality in communication
- · Load imbalance due to border elements and number of boundaries

Solver has greater overheads than other computations

-5- CS 418

Two Static Partitioning Schemes Strip Block Which approach is better?

Orchestration and Mapping

Spatial locality similar to equation solver

· Except lots of grids, so cache conflicts across grids

Complex working set hierarchy

- A few points for near-neighbor reuse, three subrows, partition of one grid, partitions of multiple grids...
- · First three or four most important
- · Large working sets, but data distribution easy

Synchronization

- · Barriers between phases and solver sweeps
- · Locks for global variables
- · Lots of work between synchronization events

Mapping: easy mapping to 2-d array topology or richer

= - 7 - _______ CS 418 =

CS 418

Partitioning

Decomposition: bodies in most phases, cells in computing moments

Challenges for assignment:

- · Nonuniform body distribution => work and comm. Nonuniform
 - Cannot assign by inspection
- · Distribution changes dynamically across time-steps
- Cannot assign statically
- · Information needs fall off with distance from body
- Partitions should be spatially contiguous for locality
- · Different phases have different work distributions across bodies
 - No single assignment ideal for all
 - Focus on force calculation phase
- · Communication needs naturally fine-grained and irregular

- 13 - CS 418

Load Balancing

Equal particles \neq equal work.

· Solution: Assign costs to particles based on the work they do

Work unknown and changes with time-steps

- · Insight: System evolves slowly
- <u>Solution</u>: *Count* work per particle, and use as cost for next time-step.

Powerful technique for evolving physical systems

- 14 - CS 418

A Partitioning Approach: ORB

Orthogonal Recursive Bisection:

- · Recursively bisect space into subspaces with equal work
 - Work is associated with bodies, as before
- · Continue until one partition per processor

· High overhead for large number of processors

Another Approach: Costzones

Insight: Tree already contains an encoding of spatial locality.

· Costzones is low-overhead and very easy to program

- 16 - C5 418

Orchestration and Mapping

Spatial locality: Very different than in Ocean, like other aspects

- · Data distribution is much more difficult
- Redistribution across time-steps
- Logical granularity (body/cell) much smaller than page
- Partitions contiguous in physical space does not imply contiguous in array
- But, good temporal locality, and most misses logically non-local anyway
- · Long cache blocks help within body/cell record, not entire partition

Temporal locality and working sets:

- · Important working set scales as $1/\theta^2 \log n$
- · Slow growth rate, and fits in second-level caches, unlike Ocean

Synchronization:

- · Barriers between phases
- · No synch within force calculation: data written different from data read
- · Locks in tree-building, pt. to pt. event synch in center of mass phase

Mapping: ORB maps well to hypercube, costzones to linear array

- 18 - CS 418

Case 3: Raytrace

Rays shot through pixels in image are called *primary rays*

- · Reflect and refract when they hit objects
- · Recursive process generates ray tree per primary ray

Hierarchical spatial data structure keeps track of primitives in scene

· Nodes are space cells, leaves have linked list of primitives

Tradeoffs between execution time and image quality

- 20 - CS 418

Partitioning Scene-oriented approach · Partition scene cells, process rays while they are in an assigned cell Ray-oriented approach · Partition primary rays (pixels), access scene data as needed · Simpler; used here Need dynamic assignment; use contiguous blocks to exploit spatial coherence among neighboring rays, plus tiles for task stealing A tile, A block, the unit of decomposition the unit of and stealing assignment Could use 2-D interleaved (scatter) assignment of tiles instead = - 21 -

Orchestration and Mapping

Spatial locality

- · Proper data distribution for ray-oriented approach very difficult
- · Dynamically changing, unpredictable access, fine-grained access
- · Better spatial locality on image data than on scene data
 - Strip partition would do better, but less spatial coherence in scene access

Temporal locality

- · Working sets much larger and more diffuse than Barnes-Hut
- · But still a lot of reuse in modern second-level caches
 - SAS program does not replicate in main memory

Synchronization:

· One barrier at end, locks on task queues

Mapping: natural to 2-d mesh for image, but likely not important

- 22 - _____ CS 418