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Parallel Application Case Studies

Examine Ocean and Barnes-Hut (others in book)
Assume cache-coherent shared address spacep
Five parts for each application

• Sequential algorithms and data structures
• Partitioning
• Orchestration
• Mapping
• Components of execution time on SGI Origin2000
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Case 1: Simulating Ocean Currents

• Model as two dimensional grids

(a) Cross sections (b) Spatial discretization of a cross section
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• Model as two-dimensional grids
• Discretize in space and time

– finer spatial and temporal resolution => greater 
accuracy

• Many different computations per time step
– set up and solve equations

• Concurrency across and within grid computations

Time Step in Ocean Simulation 
 Put Laplacian

of 1 in W11

Add f   values to columns
of W1 and W1

 Put Laplacian
of 3 in W13

Copy 1, 3    
into T1, T3

Copy 1M, 3M    
into  

Put 1 3    
in W2

Put computed 2    
values in W3

 Initialize 
a and b

 Put Laplacian of 
  in W7of W11 and W13

Update the  expressions

Solve the equation for a and put the result in a 

Put Jacobians of (W1, T1  ),
(W13, T3) in W51, W53

into 1, 3

Copy T1, T3    
into 1M, 3M

1M, 3M in W71,3

 Put Laplacian of
W71,3 in W41,3   

 

 Put Laplacian of
W41,3 in W71,3

 Put Jacobian of
(W2,W3) in W6 
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Compute the integral of a 

Use and to update 1 and   

Update streamfunction running sums and determine whether to end program

Compute a + C(t) b (Note: a   
and now  are maintained in a matrix) 

Solve the equation for  and put result in b 
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Partitioning 

Exploit data parallelism
• Function parallelism only to reduce synchronization• Function parallelism only to reduce synchronization

Static partitioning within a grid computation
• Block versus strip

– inherent communication versus spatial locality in communication
• Load imbalance due to border elements and number of boundaries

Solver has greater overheads than other computations
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Two Static Partitioning Schemes
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Which approach is better?

Strip Block

Orchestration and Mapping

Spatial locality similar to equation solver
• Except lots of grids, so cache conflicts across grids

Complex working set hierarchy
• A few points for near-neighbor reuse, three subrows, partition of 

one grid, partitions of multiple grids…
• First three or four most important
• Large working sets, but data distribution easy

Synchronization
• Barriers between phases and solver sweeps
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p p
• Locks for global variables
• Lots of work between synchronization events

Mapping: easy mapping to 2-d array topology or richer

Execution Time Breakdown
•1030 x 1030 grids with block partitioning on 32-processor Origin2000
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• 4D grids much better than 2D, despite very large caches on machine
– data distribution is much more crucial on machines with smaller caches

• Major bottleneck in this configuration is time waiting at barriers
– imbalance in memory stall times as well
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Impact of Line Size & Data Distribution
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no-alloc = round-robin page allocation; otherwise, data assigned to local 
memory. L = cache line size.

Case 2: Simulating Galaxy Evolution

• Simulate the interactions of many stars evolving over time
• Computing forces is expensive

( 2) b  f  h• O(n2) brute force approach
• Hierarchical Methods take advantage of force law:  G m1m2

r2
Star on which forces
are being computed Large group far

enough away to
approximate
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•Many time-steps, plenty of concurrency across stars within one

Star too close to
approximate

Small group far enough away to
approximate to center of mass

Barnes-Hut
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Locality Goal:
• particles close together in space should be on same processor

Difficulties:
• nonuniform, dynamically changing

Application Structure

Build tree

Compute
forces

Update
properties
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Compute
moments of cells

Traverse tree
to compute forces
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• Main data structures: array of bodies, of cells, and of pointers to them
– Each body/cell has several fields: mass, position, pointers to others 
– pointers are assigned to processes
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Partitioning

Decomposition: bodies in most phases, cells in computing 
moments

Challenges for assignment:
• Nonuniform body distribution => work and comm. Nonuniform

– Cannot assign by inspection
• Distribution changes dynamically across time-steps

– Cannot assign statically
• Information needs fall off with distance from body

– Partitions should be spatially contiguous for locality
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p y g y
• Different phases have different work distributions across bodies

– No single assignment ideal for all
– Focus on force calculation phase

• Communication needs naturally fine-grained and irregular

Load Balancing

Equal particles  equal work.

• Solution:  Assign costs to particles based on the work they do

Work unknown and changes with time-steps

• Insight :  System evolves slowly

• Solution:  Count work per particle, and use as cost for next 
time step
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time-step.

Powerful technique for evolving physical systems

A Partitioning Approach: ORB
Orthogonal Recursive Bisection:

• Recursively bisect space into subspaces with equal work
– Work is associated with bodies, as before, f

• Continue until one partition per processor
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• High overhead for large number of processors

Another Approach: Costzones

Insight: Tree already contains an encoding of spatial locality.
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• Costzones is low-overhead and very easy to program

(a) ORB (b) Costzones

P1 P2 P3 P4 P5 P6 P7 P8
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Barnes-Hut Performance
Ideal
Costzones

ORB
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• Speedups on simulated multiprocessor
• Extra work in ORB is the key difference

Orchestration and Mapping
Spatial locality: Very different than in Ocean, like other aspects

• Data distribution is much more difficult
– Redistribution across time-stepsRedistribution across time steps
– Logical granularity (body/cell) much smaller than page
– Partitions contiguous in physical space does not imply contiguous in array
– But, good temporal locality, and most misses logically non-local anyway

• Long cache blocks help within body/cell record, not entire partition

Temporal locality and working sets:
• Important working set scales as 1/2log n
• Slow growth rate, and fits in second-level caches, unlike Ocean
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Synchronization:
• Barriers between phases
• No synch within force calculation: data written different from data read
• Locks in tree-building, pt. to pt. event synch in center of mass phase

Mapping: ORB maps well to hypercube, costzones to linear array

Execution Time Breakdown

•512K bodies on 32-processor Origin2000
–Static, quite randomized in space, assignment of bodies versus costzones
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•Problem with static case is communication/locality, not load balance!

Process
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(a) Static assignment of bodies (b) Semistatic costzone assignment

Case 3: Raytrace

Rays shot through pixels in image are called primary rays
• Reflect and refract when they hit objects
• Recursive process generates ray tree per primary ray

Hierarchical spatial data structure keeps track of 
primitives in scene
• Nodes are space cells, leaves have linked list of primitives

Tradeoffs between execution time and image quality

CS 418– 20 –



Page 6

Partitioning
Scene-oriented approach 

• Partition scene cells, process rays while they are in an assigned cell
Ray-oriented approach Ray-oriented approach 

• Partition primary rays (pixels), access scene data as needed
• Simpler; used here

Need dynamic assignment; use contiguous blocks to exploit 
spatial coherence among neighboring rays, plus tiles for 
task stealing

A til
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A block,
the unit of
assignment

A tile,
the unit of decomposition
and stealing

Could use 2-D interleaved (scatter) assignment of tiles instead

Orchestration and Mapping

Spatial locality
• Proper data distribution for ray-oriented approach very difficult

D i ll  h i  di t bl   fi i d • Dynamically changing, unpredictable access, fine-grained access
• Better spatial locality on image data than on scene data

– Strip partition would do better, but less spatial coherence in scene 
access

Temporal locality
• Working sets much larger and more diffuse than Barnes-Hut
• But still a lot of reuse in modern second-level caches

– SAS program does not replicate in main memory
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p g p y
Synchronization:

• One barrier at end, locks on task queues
Mapping: natural to 2-d mesh for image, but likely not 
important

Execution Time Breakdown
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• Task stealing clearly very important for load balance

Process Process


