
Lecture 23:
Domain-Speci!c Parallel Programming

CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012)

Acknowledgments: Pat Hanrahan, Hassan Cha!



 (CMU 15-418, Spring 2012)

Announcements

▪ List of class !nal projects
http://www.cs.cmu.edu/~15418/projectlist.html

▪ You are encouraged to keep a log of activities, rants, thinking, 
!ndings, on your project web page
-­‐ It will be interesting for us to read
-­‐ It will come in handy when it comes time to do your writeup
-­‐ Writing clari!es thinking

http://www.cs.cmu.edu/afs/cs/academic/class/15418-s12/www/projectlist.html
http://www.cs.cmu.edu/afs/cs/academic/class/15418-s12/www/projectlist.html
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Course themes:

Designing computer systems that scale
(running faster given more resources)

Designing computer systems that are efficient
(running faster under constraints on resources)

exploiting parallelism in applications
exploiting locality in applications

leveraging HW specialization
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Hardware trend: specialization of execution

▪ Multiple forms of parallelism
- SIMD/vector processing
- Multi-threading
- Multi-core
- Multiple node
- Multiple-server

▪ Heterogeneous execution capability 
- Programmable, latency-centric (e.g., “CPU-like” cores)

- Programmable, throughput-optimized (e.g., “GPU-like” cores)

- Fixed-function, application-speci!c (e.g., image/video/audio processing)

!ne-granularity parallelism: similar 
execution on different data

varying scales of coarse-granularity 
parallelism

Motivation: maximize compute capability given constraints on chip area, power

mitigate inefficiencies of unpredictable 
data access
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Most software is inefficient

▪ Consider basic sequential C code (baseline performance)

▪ Well-written sequential C code: ~ 5-10x faster
▪ Assembly language program: another small constant factor faster
▪ Java, Python, PHP, etc. ?? 

Credit: Pat Hanrahan
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Code performance relative to C (single core) 
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Source: The Computer Language Benchmarks Game: http://shootout.alioth.debian.org  

http://shootout.alioth.debian.org
http://shootout.alioth.debian.org
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Even good C code is inefficient

Recall Assignment 1’s Mandelbrot program
For execution on this laptop: quad-core, Intel Core i7, AVX instructions...

Single core, with AVX vector instructions: 5.8x speedup over C implementation
Multi-core + hyper-threading + vector instructions: 21.7x speedup

Conclusion: basic C implementation leaves a lot of performance on the table
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Making efficient use of modern machines is challenging
(proof by assignments 2, 3, and 4)

In assignments you only programmed homogeneous parallel environments.
And parallelism in that context was not easy.

GPU only (assignment 2)
Blacklight: CPUs with relatively fast interconnect (assignment 3, 4)

(interesting: no one attempted to utilize SIMD on assignments 3 or 4)
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Power-efficient heterogeneous platforms

Integrated
CPU + GPU

Mobile system-on-a-chip:
CPU+GPU+media processing

GPU:
throughput cores + !xed-function

CPU+data-parallel accelerator
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Huge challenge

▪ Machines with very different performance characteristics
▪ Worse: different technologies and performance characteristics 

within the same machine at different scales
- Within a core: SIMD, multi-threading: !ne-granularity sync and comm.
- Across cores: coherent shared memory via fast on-chip network
- Hybrid CPU+GPU multi-core: incoherent (potentially) shared memory
- Across racks: distributed memory, multi-stage network
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Variety of programming models to abstract HW

▪ Machines with very different performance characteristics
▪ Worse: different technologies and performance characteristics 

within the same machine at different scales
- Within a core: SIMD, multi-threading: !ne grained sync and comm.

- Abstractions: SPMD programming (ISPC, Cuda, OpenCL)
- Across cores: coherent shared memory via fast on-chip network

- Abstractions: OpenMP shared address space
- Hybrid CPU+GPU multi-core: incoherent (potentially) shared memory

- Abstractions: OpenCL, GRAMPS ??
- Across racks: distributed memory, multi-stage network

- Abstractions: message passing (MPI, Go channels)

Credit: Pat Hanrahan
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Huge challenge
▪ Machines with very different performance characteristics
▪ Worse: different performance characteristics within the same 

machine at different scales
▪ To be efficient, software must be optimized for HW characteristics

- Difficult even in the case of one level of one machine **
- Combinatorial complexity of optimizations when considering a 

complex machine, or different machines
- Loss of software portability 

** Little success developing automatic tools to identify efficient HW mapping for arbitrary, complex applications 

Credit: Pat Hanrahan
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Open CS question:

How do we enable programmers to write software 
that efficiently uses these parallel machines?
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The [magical] ideal parallel programming language

Completeness
(applicable to most problems we 

want to write a program for)

Productivity
(ease of development)

??

High Performance
(software is scalable and efficient) 

Credit: Pat Hanrahan
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Successful programming languages

Completeness
(applicable to most problems we 

want to write a program for)

Productivity
(ease of development)

??

High Performance
(software is scalable and efficient) 

Credit: Pat Hanrahan
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Growing interest in domain-speci!c programming systems
To realize high performance and productivity: willing to sacri!ce completeness

High Performance
(software is scalable and efficient) 

Completeness
(applicable to most problems we 

want to write a program for)

Productivity
(ease of development)

??

Domain-speci!c 
languages and 
programming 

frameworks

Credit: Pat Hanrahan
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Domain-speci!c programming systems
▪ Main idea: raise level of abstraction
▪ Introduce high-level programming primitives speci!c to domain

- Productive: intuitive to use, portable across machines, primitives correspond to 
behaviors frequently used to solve problems in domain

- Performant: system uses domain knowledge to provide efficient, optimized 
implementation(s)
- Given a machine: what algorithms to use, parallelization strategies to employ
- Optimization goes beyond efficient software mapping: HW platform can be 

optimized to the abstractions as well

▪ Cost: loss of generality/completeness
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Two domain-speci!c programming examples

1. Graphics: OpenGL

2. Scienti!c computing: Liszt
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Example 1:
OpenGL: a programming system for real-time rendering
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OpenGL graphics pipeline
▪ Key abstraction: graphics pipeline

▪ Programming system de!nes a basic 
program structure and data $ows

▪ Programmer !lls in the body of the 
“forall” loops (red boxes)

Vertex Processing

Fragment Generation
(Rasterization)

Fragment Processing

Pixel Blend Operations

Vertex stream

Triangle stream

Fragment stream

Fragment stream

Triangles positioned on screen

“Fragments” (one fragment per each covered pixel per triangle)

Shaded fragments

Output image (pixels)

Vertices in 3D space
(provided by application)

1

2

3
4
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Fragment “shader” program

sampler	
  mySamp;
Texture2D<float3>	
  myTex;
float3	
  lightDir;

float4	
  diffuseShader(float3	
  norm,	
  float2	
  uv)
{
	
  	
  float3	
  kd;
	
  	
  kd	
  =	
  myTex.sample(mySamp,	
  uv);
	
  	
  kd	
  *=	
  clamp(dot(lightDir,	
  norm),	
  0.0,	
  1.0);
	
  	
  return	
  float4(kd,	
  1.0);	
  	
  	
  
}	
  

HLSL shader program: de!nes behavior of fragment processing stage 
Executes once per pixel covered by each triangle

Input: a “fragment”: information about the triangle at the pixel
Output: RGBA color ($oat4 datatype)

Productivity:
- SPMD program: no explicit parallelism
- Programmer writes no loops.  Code is 

implicitly a loop body
- Code runs independently for each input 

fragment (no loops = impossible to 
express a loop dependency)

Performance:
- SPMD program compiles to wide SIMD 

processing on GPU
- Work for many fragments dynamically 

balanced onto GPU cores

- Performance Portability:
- Scales to GPUs with different # of cores
- SPMD abstraction compiles to different 

SIMD widths (NVIDIA=32, AMD=64, 
Intel=?)
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Special language primitive for texture mapping

sampler	
  mySamp;
Texture2D<float3>	
  myTex;
float3	
  lightDir;

float4	
  diffuseShader(float3	
  norm,	
  float2	
  uv)
{
	
  	
  float3	
  kd;
	
  	
  kd	
  =	
  myTex.sample(mySamp,	
  uv);
	
  	
  kd	
  *=	
  clamp(dot(lightDir,	
  norm),	
  0.0,	
  1.0);
	
  	
  return	
  float4(kd,	
  1.0);	
  	
  	
  
}	
  

myTex:
NxN texture buffer

Result of mapping texture onto 
plane, viewed with perspective

Productivity:
- Intuitive: abstraction presents a texture 

lookup like an array access with a 2D 
$oating point index.

uv = (0.3, 0.5)
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Texture mapping is expensive (performance critical)

▪ Texture mapping is more than an array lookup (see 15-462)
- ~50 instructions, multiple conditionals
- Read at least 8 texture values

- Unpredictable data access, little temporal locality

▪ Typical shader performs multiple texture lookups
▪ Texture mapping is one of the most computationally 

demanding AND bandwidth intensive aspects of the graphics 
pipeline
- Resources for texturing must run near 100% efficiency
- Not surprising it is encapsulated in its own primitive
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Performance: texture mapping
▪ Highly multi-threaded cores hide latency of memory access

(texture primitive = location of long mem. stalls explicit in programming model)

▪ Fixed-function HW to perform texture mapping math

▪ Special-cache designs to capture reuse, exploit read-only access to texture data
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Performance: global application orchestration

Vertex Processing

Fragment Generation
(Rasterization)

Fragment Processing

Pixel Blend Operations

Hundreds of thousands of triangles 

Millions of fragments to shade  

Millions of shaded fragments to blend into output image 

Parallel work: 

Efficiently scheduling all this parallel work onto the GPU’s pool of resources, while respecting the ordering 
requirements of the programming model, is challenging. 

Each GPU vendor uses it’s own custom strategy.
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OpenGL summary
▪ Productivity:

- High-level, intuitive abstractions (taught to undergrads in intro graphics class)
- Application implements kernels for triangles, vertices, and fragments
- Speci!c primitives for key functions like texture mapping

▪ Portability
- Runs across wide range of GPUs: low-end integrated, high-end discrete, mobile
- Has allowed signi!cant hardware innovation without impacting programmer

▪ High-Performance
- Abstractions designed to map efficiently to hardware

(proposed new features disallowed if they do not!)
- Encapsulating expensive operations as unique pipeline stages or built-in functions 

facilitates !xed-function implementations (texture, rasterization, frame-buffer blend)
- Utilize domain-knowledge in optimizing performance / mapping to hardware

- Skip unnecessary work, e.g., if a triangle it is determined to be behind another, don’t 
generate and shade its fragments

- Non-overlapping fragments are independent despite ordering constraint
- Interstage queues/buffers are sized based on expected triangle sizes
- Use pipeline structure to make good scheduling decisions, set work priorities
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Example 2:
Lizst: a language for solving PDE’s on meshes

http://liszt.stanford.edu/

See [DeVito et al. SC11, SciDac ’11]

Slide credit for this section of lecture:
Pat Hanrahan, Stanford University

http://liszt.stanford.edu
http://liszt.stanford.edu


Fields on unstructured meshes

val	
  Position	
  =	
  FieldWithLabel[Vertex,Float3](“position”)

val	
  Temperature	
  =	
  FieldWithConst[Vertex,Float](0.0f)
val	
  Flux	
  =	
  FieldWithConst[Vertex,Float](0.0f)
val	
  JacobiStep	
  =	
  FieldWithConst[Vertex,Float](0.0f)

Notes:
Fields	
  are	
  a	
  higher-­‐kinded	
  type
(special	
  function	
  that	
  maps	
  a	
  type	
  to	
  a	
  new	
  type)
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Explicit algorithm: heat conduction on grid
var	
  i	
  =	
  0;
while	
  (	
  i	
  <	
  1000	
  )	
  {
	
  	
  Flux(vertices(mesh))	
  =	
  0.f;
	
  	
  JacobiStep(vertices(mesh))	
  =	
  0.f;
	
  	
  for	
  (e	
  <-­‐	
  edges(mesh))	
  {
	
  	
  	
  	
  val	
  v1	
  =	
  head(e)
	
  	
  	
  	
  val	
  v2	
  =	
  tail(e)
	
  	
  	
  	
  val	
  dP	
  =	
  Position(v1)	
  -­‐	
  Position(v2)
	
  	
  	
  	
  val	
  dT	
  =	
  Temperature(v1)	
  -­‐	
  Temperature(v2)
	
  	
  	
  	
  val	
  step	
  =	
  1.0f/(length(dP))
	
  	
  	
  	
  Flux(v1)	
  +=	
  dT*step
	
  	
  	
  	
  Flux(v2)	
  -­‐=	
  dT*step
	
  	
  	
  	
  JacobiStep(v1)	
  +=	
  step
	
  	
  	
  	
  JacobiStep(v2)	
  +=	
  step
	
  	
  }	
  
	
  	
  i	
  +=	
  1
}
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Fields

Mesh

Topology Functions

Iteration over Set



Liszt topological operators
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Liszt programming
▪ Liszt program describes operations on !elds of abstract mesh 

representation 
▪ Application speci!es type of mesh (regular, irregular) and its topology
▪ Mesh representation is chosen by Liszt

- Based on mesh type, program behavior, and machine 
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Compiling to parallel computers
Recall challenges you have faced in your assignments

1. Identify parallelism
2. Identify data locality
3. Reason about required synchronization
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Key: determining program dependencies
1. Identify parallelism

- Absence of dependencies implies can be executed in parallel

2. Identify data locality
- Partition data based on dependencies (localize dependent 

computations for faster synchronization)

3. Reason about required synchronization
- Sync. needed to respect existing dependencies (must wait until values a 

computation depends on are known)

But in general programs, compilers are unable to infer dependencies at global 
scale: a[i] = b[f(i)]    (must execute f(i) to know dependency)



Statically analyze code to !nd stencil of each top-level for loop
- Extract nested mesh element reads
- Extract !eld operations

for	
  (e	
  <-­‐	
  edges(mesh))	
  {
	
  	
  val	
  v1	
  =	
  head(e)
	
  	
  val	
  v2	
  =	
  tail(e)
	
  	
  val	
  dP	
  =	
  Position(v1)	
  -­‐	
  Position(v2)
	
  	
  val	
  dT	
  =	
  Temperature(v1)	
  -­‐	
  Temperature(v2)
	
  	
  val	
  step	
  =	
  1.0f/(length(dP))
	
  	
  Flux(v1)	
  +=	
  dT*step
	
  	
  Flux(v2)	
  -­‐=	
  dT*step
	
  	
  JacobiStep(v1)	
  +=	
  step
	
  	
  JacobiStep(v2)	
  +=	
  step
}
…	
  

e in 
edges(mesh)

head(e) tail(e)

Write Flux, JacobiStep Write Flux, JacobiStep
Read Position,Temperature Read Position, Temperature

vertices(mesh)

Read/Write Flux

Write Temperature
Read/Write JacobiStep

Liszt is constrained to allow dependency analysis 
Inferring stencils:  (“stencil” = mesh elements accessed in iteration of loop = dependencies for the iteration)



Restrict language for dependency analysis
“Language Restrictions”
- Mesh elements only accessed through built-in topological functions:

	 	 cells(mesh),	
  …
- Single static assignment:

	 	 val	
  v1	
  =	
  head(e)

- Data in Fields can only be accessed using mesh elements:

	
  	
  	
  	
  	
  	
  	
  	
   Pressure(v)

- No recursive functions

Allows compiler to automatically infer stencil



Portable parallelism: use dependencies to implement 
different parallel execution strategies
Partitioning
- Assign partition to each computational unit

-Use ghost elements to coordinate                                            cross-
boundary communication.

Coloring
-Calculate interference between work items on domain

- Schedule work-items into non-interfering batches

Owned Cell

Ghost Cell

1 58 1011 73 0 24 9

Batch 4Batch 3Batch 2Batch 1

Schedule set of nonconflicting threads per color



Distribution memory implementation:
Mesh + Stencil -> Graph -> Partition

for(f	
  <-­‐	
  faces(mesh))	
  {
	
  	
  rhoOutside(f)	
  :=	
  	
  
	
  	
  	
  	
  calc_flux(	
  f,rho(outside(f)	
  ))
	
  	
  	
  	
  +	
  calc_flux(	
  f,rho(inside(f)	
  ))
}

Initial Partition 
(by ParMETIS)

Consider distributed memory implementation
Store region of mesh on each node in a cluster
(ParMETIS is a tool to partition meshes)



Ghost 
Cells

Each also needs data for neighboring cells to 
perform computation (“ghost cells”)
(recall solver example from Textbook) 



GPU implementation: parallel reductions

Threads 1 edge assigned to 1 thread

Memory

Force
Field: 

1 5 8 10 11730 2 4 6 9

A C E F HGDB

for	
  (e	
  <-­‐	
  edges(mesh))	
  {
	
  	
  …
	
  	
  Flux(v1)	
  +=	
  dT*step
	
  	
  Flux(v2)	
  -­‐=	
  dT*step
	
  	
  …
}

Different edges share a vertex: requires 
atomic update of per-vertex !eld data
(Expensive: recall assignment 2)

Previous example, one region of mesh per processor (or node in MPI cluster)
On GPU, natural parallelization is one edge per CUDA thread



GPU implementation: con$ict graph
Threads 1 edge assigned to 1 thread

Memory

Force
Field: 

1 5 8 10 11730 2 4 6 9

A C E F HGDB

1 5 8 10

11730

2 4 6 9

Identify mesh edges with colliding writes
(lines in graph indicate presence of collision)

Can run program to get this information.
(results valid provided mesh does not change)



Threads 1 edge assigned to 1 thread

Memory

Force
Field: 

1 5 8 10 11730 2 4 6 9

A C E F HGDB

1 5 8 10

11730

2 4 6 9

GPU implementation: con$ict graph

“Color” nodes in graph such that no connected 
nodes have the same color

Can execute on GPU in parallel, without atomic 
operations, by running all nodes with the same 
color in a single CUDA launch. 



MPI Performance  

256 nodes, 8 cores per node

32

128

256

512

1024

32 128 256 512 1024

Sp
ee

du
p

Cores

Euler
23M cell mesh

Liszt
C++

32

128

256

512

1024

32 128 256 512 1024
Cores

Navier-Stokes
21M cell mesh

Liszt
C++

Important: 
Performance portability: same Liszt program also runs with high efficiency on GPU 
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Liszt summary

▪ Productivity:
- Abstract representation of mesh: vertices, edges, faces, !elds
- Intuitive topological operators

▪ Portability
- Same code runs on cluster of CPUs (MPI runtime) and GPUs

▪ High-Performance
- Language constrained to allow compiler to track dependencies
- Used for locality-aware partitioning in distributed memory implementation
- Used for graph coloring in GPU implementation
- Completely different parallelization strategies for difference platforms
- Underlying mesh representation customized based on usage and platform (e.g, 

struct of arrays vs. array of structs) 
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Many other recent domain-speci!c programming systems

Operations on graphs for machine learningLess domain speci!c than examples given today, 
but still designed speci!cally for: 
data-parallel computations on big data for 
distributed systems (“Map-Reduce”)

Emerging examples in:
Computer vision
Image processing
Statistics/machine learning

Model-view-controller paradigm for 
web-applications
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Domain-speci!c language development
▪ Stand-alone language

- Graphics shading languages
- MATLAB, SQL

▪ Fully “embedded” in an existing generic language
- e.g., C++ library
- GraphLab, OpenGL host-side API, Map-Reduce

▪ Recent research idea:
- Design generic languages that have facilities that assist embedding of domain-

speci!c languages
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Facilitating development of new domain-speci!c languages
“Embed” domain-speci!c language in generic, $exible embedding language

Stand-alone domain-special language must implement everything

Domain language adopts front-end from 
highly expressive embedding language  

But customizes intermediate representation (IR) 
and participates in backend optimization and 
code-generation phases (exploiting domain 
knowledge while doing so)Leverage techniques like operator overloading, 

modern OOP (traits), type inference, closures, to 
make embedding language syntax appear native:

Liszt code shown before was actually valid Scala!

“Modular staging” approach: 

Credit: Hassan Cha!
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Summary
▪ Modern machines: parallel, heterogeneous

- Only way to increase compute capability in power-constrained world

▪ Most software uses very little of peak capability of machine
- Very challenging to tune programs to these machines
- Tuning efforts are not portable across machines

▪ Domain-speci!c programming environments trade-off 
generality to achieve productivity, performance, and 
portability
- Examples today: OpenGL, Liszt


