
Lecture 23:
Domain-Speci!c Parallel Programming

CMU 15-418: Parallel Computer Architecture and Programming (Spring 2012)

Acknowledgments: Pat Hanrahan, Hassan Cha!

 (CMU 15-418, Spring 2012)

Announcements

▪ List of class !nal projects
http://www.cs.cmu.edu/~15418/projectlist.html

▪ You are encouraged to keep a log of activities, rants, thinking,
!ndings, on your project web page
-­‐ It will be interesting for us to read
-­‐ It will come in handy when it comes time to do your writeup
-­‐ Writing clari!es thinking

http://www.cs.cmu.edu/afs/cs/academic/class/15418-s12/www/projectlist.html
http://www.cs.cmu.edu/afs/cs/academic/class/15418-s12/www/projectlist.html

 (CMU 15-418, Spring 2012)

Course themes:

Designing computer systems that scale
(running faster given more resources)

Designing computer systems that are efficient
(running faster under constraints on resources)

exploiting parallelism in applications
exploiting locality in applications

leveraging HW specialization

 (CMU 15-418, Spring 2012)

Hardware trend: specialization of execution

▪ Multiple forms of parallelism
- SIMD/vector processing
- Multi-threading
- Multi-core
- Multiple node
- Multiple-server

▪ Heterogeneous execution capability
- Programmable, latency-centric (e.g., “CPU-like” cores)

- Programmable, throughput-optimized (e.g., “GPU-like” cores)

- Fixed-function, application-speci!c (e.g., image/video/audio processing)

!ne-granularity parallelism: similar
execution on different data

varying scales of coarse-granularity
parallelism

Motivation: maximize compute capability given constraints on chip area, power

mitigate inefficiencies of unpredictable
data access

 (CMU 15-418, Spring 2012)

Most software is inefficient

▪ Consider basic sequential C code (baseline performance)

▪ Well-written sequential C code: ~ 5-10x faster
▪ Assembly language program: another small constant factor faster
▪ Java, Python, PHP, etc. ??

Credit: Pat Hanrahan

 (CMU 15-418, Spring 2012)

Code performance relative to C (single core)

0

10

20

30

40

50

60

70

80

Java Scala C# Go Lua PHP Python Ruby

N-body

Mandelbrot

153

Mandelbrot

Slo
wd

ow
n c

om
pa

re
d t

o “
we

ll-
wr

itt
en

” C
 co

de

Source: The Computer Language Benchmarks Game: http://shootout.alioth.debian.org

http://shootout.alioth.debian.org
http://shootout.alioth.debian.org

 (CMU 15-418, Spring 2012)

Even good C code is inefficient

Recall Assignment 1’s Mandelbrot program
For execution on this laptop: quad-core, Intel Core i7, AVX instructions...

Single core, with AVX vector instructions: 5.8x speedup over C implementation
Multi-core + hyper-threading + vector instructions: 21.7x speedup

Conclusion: basic C implementation leaves a lot of performance on the table

 (CMU 15-418, Spring 2012)

Making efficient use of modern machines is challenging
(proof by assignments 2, 3, and 4)

In assignments you only programmed homogeneous parallel environments.
And parallelism in that context was not easy.

GPU only (assignment 2)
Blacklight: CPUs with relatively fast interconnect (assignment 3, 4)

(interesting: no one attempted to utilize SIMD on assignments 3 or 4)

 (CMU 15-418, Spring 2012)

Power-efficient heterogeneous platforms

Integrated
CPU + GPU

Mobile system-on-a-chip:
CPU+GPU+media processing

GPU:
throughput cores + !xed-function

CPU+data-parallel accelerator

 (CMU 15-418, Spring 2012)

Huge challenge

▪ Machines with very different performance characteristics
▪ Worse: different technologies and performance characteristics

within the same machine at different scales
- Within a core: SIMD, multi-threading: !ne-granularity sync and comm.
- Across cores: coherent shared memory via fast on-chip network
- Hybrid CPU+GPU multi-core: incoherent (potentially) shared memory
- Across racks: distributed memory, multi-stage network

 (CMU 15-418, Spring 2012)

Variety of programming models to abstract HW

▪ Machines with very different performance characteristics
▪ Worse: different technologies and performance characteristics

within the same machine at different scales
- Within a core: SIMD, multi-threading: !ne grained sync and comm.

- Abstractions: SPMD programming (ISPC, Cuda, OpenCL)
- Across cores: coherent shared memory via fast on-chip network

- Abstractions: OpenMP shared address space
- Hybrid CPU+GPU multi-core: incoherent (potentially) shared memory

- Abstractions: OpenCL, GRAMPS ??
- Across racks: distributed memory, multi-stage network

- Abstractions: message passing (MPI, Go channels)

Credit: Pat Hanrahan

 (CMU 15-418, Spring 2012)

Huge challenge
▪ Machines with very different performance characteristics
▪ Worse: different performance characteristics within the same

machine at different scales
▪ To be efficient, software must be optimized for HW characteristics

- Difficult even in the case of one level of one machine **
- Combinatorial complexity of optimizations when considering a

complex machine, or different machines
- Loss of software portability

** Little success developing automatic tools to identify efficient HW mapping for arbitrary, complex applications

Credit: Pat Hanrahan

 (CMU 15-418, Spring 2012)

Open CS question:

How do we enable programmers to write software
that efficiently uses these parallel machines?

 (CMU 15-418, Spring 2012)

The [magical] ideal parallel programming language

Completeness
(applicable to most problems we

want to write a program for)

Productivity
(ease of development)

??

High Performance
(software is scalable and efficient)

Credit: Pat Hanrahan

 (CMU 15-418, Spring 2012)

Successful programming languages

Completeness
(applicable to most problems we

want to write a program for)

Productivity
(ease of development)

??

High Performance
(software is scalable and efficient)

Credit: Pat Hanrahan

 (CMU 15-418, Spring 2012)

Growing interest in domain-speci!c programming systems
To realize high performance and productivity: willing to sacri!ce completeness

High Performance
(software is scalable and efficient)

Completeness
(applicable to most problems we

want to write a program for)

Productivity
(ease of development)

??

Domain-speci!c
languages and
programming

frameworks

Credit: Pat Hanrahan

 (CMU 15-418, Spring 2012)

Domain-speci!c programming systems
▪ Main idea: raise level of abstraction
▪ Introduce high-level programming primitives speci!c to domain

- Productive: intuitive to use, portable across machines, primitives correspond to
behaviors frequently used to solve problems in domain

- Performant: system uses domain knowledge to provide efficient, optimized
implementation(s)
- Given a machine: what algorithms to use, parallelization strategies to employ
- Optimization goes beyond efficient software mapping: HW platform can be

optimized to the abstractions as well

▪ Cost: loss of generality/completeness

 (CMU 15-418, Spring 2012)

Two domain-speci!c programming examples

1. Graphics: OpenGL

2. Scienti!c computing: Liszt

 (CMU 15-418, Spring 2012)

Example 1:
OpenGL: a programming system for real-time rendering

 (CMU 15-418, Spring 2012)

OpenGL graphics pipeline
▪ Key abstraction: graphics pipeline

▪ Programming system de!nes a basic
program structure and data $ows

▪ Programmer !lls in the body of the
“forall” loops (red boxes)

Vertex Processing

Fragment Generation
(Rasterization)

Fragment Processing

Pixel Blend Operations

Vertex stream

Triangle stream

Fragment stream

Fragment stream

Triangles positioned on screen

“Fragments” (one fragment per each covered pixel per triangle)

Shaded fragments

Output image (pixels)

Vertices in 3D space
(provided by application)

1

2

3
4

 (CMU 15-418, Spring 2012)

Fragment “shader” program

sampler	
 mySamp;
Texture2D<float3>	
 myTex;
float3	
 lightDir;

float4	
 diffuseShader(float3	
 norm,	
 float2	
 uv)
{
	
 	
 float3	
 kd;
	
 	
 kd	
 =	
 myTex.sample(mySamp,	
 uv);
	
 	
 kd	
 *=	
 clamp(dot(lightDir,	
 norm),	
 0.0,	
 1.0);
	
 	
 return	
 float4(kd,	
 1.0);	
 	
 	

}	

HLSL shader program: de!nes behavior of fragment processing stage
Executes once per pixel covered by each triangle

Input: a “fragment”: information about the triangle at the pixel
Output: RGBA color ($oat4 datatype)

Productivity:
- SPMD program: no explicit parallelism
- Programmer writes no loops. Code is

implicitly a loop body
- Code runs independently for each input

fragment (no loops = impossible to
express a loop dependency)

Performance:
- SPMD program compiles to wide SIMD

processing on GPU
- Work for many fragments dynamically

balanced onto GPU cores

- Performance Portability:
- Scales to GPUs with different # of cores
- SPMD abstraction compiles to different

SIMD widths (NVIDIA=32, AMD=64,
Intel=?)

 (CMU 15-418, Spring 2012)

Special language primitive for texture mapping

sampler	
 mySamp;
Texture2D<float3>	
 myTex;
float3	
 lightDir;

float4	
 diffuseShader(float3	
 norm,	
 float2	
 uv)
{
	
 	
 float3	
 kd;
	
 	
 kd	
 =	
 myTex.sample(mySamp,	
 uv);
	
 	
 kd	
 *=	
 clamp(dot(lightDir,	
 norm),	
 0.0,	
 1.0);
	
 	
 return	
 float4(kd,	
 1.0);	
 	
 	

}	

myTex:
NxN texture buffer

Result of mapping texture onto
plane, viewed with perspective

Productivity:
- Intuitive: abstraction presents a texture

lookup like an array access with a 2D
$oating point index.

uv = (0.3, 0.5)

 (CMU 15-418, Spring 2012)

Texture mapping is expensive (performance critical)

▪ Texture mapping is more than an array lookup (see 15-462)
- ~50 instructions, multiple conditionals
- Read at least 8 texture values

- Unpredictable data access, little temporal locality

▪ Typical shader performs multiple texture lookups
▪ Texture mapping is one of the most computationally

demanding AND bandwidth intensive aspects of the graphics
pipeline
- Resources for texturing must run near 100% efficiency
- Not surprising it is encapsulated in its own primitive

 (CMU 15-418, Spring 2012)

Performance: texture mapping
▪ Highly multi-threaded cores hide latency of memory access

(texture primitive = location of long mem. stalls explicit in programming model)

▪ Fixed-function HW to perform texture mapping math

▪ Special-cache designs to capture reuse, exploit read-only access to texture data

 (CMU 15-418, Spring 2012)

Performance: global application orchestration

Vertex Processing

Fragment Generation
(Rasterization)

Fragment Processing

Pixel Blend Operations

Hundreds of thousands of triangles

Millions of fragments to shade

Millions of shaded fragments to blend into output image

Parallel work:

Efficiently scheduling all this parallel work onto the GPU’s pool of resources, while respecting the ordering
requirements of the programming model, is challenging.

Each GPU vendor uses it’s own custom strategy.

 (CMU 15-418, Spring 2012)

OpenGL summary
▪ Productivity:

- High-level, intuitive abstractions (taught to undergrads in intro graphics class)
- Application implements kernels for triangles, vertices, and fragments
- Speci!c primitives for key functions like texture mapping

▪ Portability
- Runs across wide range of GPUs: low-end integrated, high-end discrete, mobile
- Has allowed signi!cant hardware innovation without impacting programmer

▪ High-Performance
- Abstractions designed to map efficiently to hardware

(proposed new features disallowed if they do not!)
- Encapsulating expensive operations as unique pipeline stages or built-in functions

facilitates !xed-function implementations (texture, rasterization, frame-buffer blend)
- Utilize domain-knowledge in optimizing performance / mapping to hardware

- Skip unnecessary work, e.g., if a triangle it is determined to be behind another, don’t
generate and shade its fragments

- Non-overlapping fragments are independent despite ordering constraint
- Interstage queues/buffers are sized based on expected triangle sizes
- Use pipeline structure to make good scheduling decisions, set work priorities

 (CMU 15-418, Spring 2012)

Example 2:
Lizst: a language for solving PDE’s on meshes

http://liszt.stanford.edu/

See [DeVito et al. SC11, SciDac ’11]

Slide credit for this section of lecture:
Pat Hanrahan, Stanford University

http://liszt.stanford.edu
http://liszt.stanford.edu

Fields on unstructured meshes

val	
 Position	
 =	
 FieldWithLabel[Vertex,Float3](“position”)

val	
 Temperature	
 =	
 FieldWithConst[Vertex,Float](0.0f)
val	
 Flux	
 =	
 FieldWithConst[Vertex,Float](0.0f)
val	
 JacobiStep	
 =	
 FieldWithConst[Vertex,Float](0.0f)

Notes:
Fields	
 are	
 a	
 higher-­‐kinded	
 type
(special	
 function	
 that	
 maps	
 a	
 type	
 to	
 a	
 new	
 type)

Fields

Mesh Entity

H

F

E

C

B

D G
1

5

8

10

11
7

3

0

2

4
69

A

Explicit algorithm: heat conduction on grid
var	
 i	
 =	
 0;
while	
 (
 i	
 <	
 1000	
)	
 {
	
 	
 Flux(vertices(mesh))	
 =	
 0.f;
	
 	
 JacobiStep(vertices(mesh))	
 =	
 0.f;
	
 	
 for	
 (e	
 <-­‐	
 edges(mesh))	
 {
	
 	
 	
 	
 val	
 v1	
 =	
 head(e)
	
 	
 	
 	
 val	
 v2	
 =	
 tail(e)
	
 	
 	
 	
 val	
 dP	
 =	
 Position(v1)	
 -­‐	
 Position(v2)
	
 	
 	
 	
 val	
 dT	
 =	
 Temperature(v1)	
 -­‐	
 Temperature(v2)
	
 	
 	
 	
 val	
 step	
 =	
 1.0f/(length(dP))
	
 	
 	
 	
 Flux(v1)	
 +=	
 dT*step
	
 	
 	
 	
 Flux(v2)	
 -­‐=	
 dT*step
	
 	
 	
 	
 JacobiStep(v1)	
 +=	
 step
	
 	
 	
 	
 JacobiStep(v2)	
 +=	
 step
	
 	
 }	

	
 	
 i	
 +=	
 1
}

H

F

E

C

B

D G
1

5

8

10

11
7

3

0

2

4
69

A

Fields

Mesh

Topology Functions

Iteration over Set

Liszt topological operators

 (CMU 15-418, Spring 2012)

Liszt programming
▪ Liszt program describes operations on !elds of abstract mesh

representation
▪ Application speci!es type of mesh (regular, irregular) and its topology
▪ Mesh representation is chosen by Liszt

- Based on mesh type, program behavior, and machine

 (CMU 15-418, Spring 2012)

Compiling to parallel computers
Recall challenges you have faced in your assignments

1. Identify parallelism
2. Identify data locality
3. Reason about required synchronization

 (CMU 15-418, Spring 2012)

Key: determining program dependencies
1. Identify parallelism

- Absence of dependencies implies can be executed in parallel

2. Identify data locality
- Partition data based on dependencies (localize dependent

computations for faster synchronization)

3. Reason about required synchronization
- Sync. needed to respect existing dependencies (must wait until values a

computation depends on are known)

But in general programs, compilers are unable to infer dependencies at global
scale: a[i] = b[f(i)] (must execute f(i) to know dependency)

Statically analyze code to !nd stencil of each top-level for loop
- Extract nested mesh element reads
- Extract !eld operations

for	
 (e	
 <-­‐	
 edges(mesh))	
 {
	
 	
 val	
 v1	
 =	
 head(e)
	
 	
 val	
 v2	
 =	
 tail(e)
	
 	
 val	
 dP	
 =	
 Position(v1)	
 -­‐	
 Position(v2)
	
 	
 val	
 dT	
 =	
 Temperature(v1)	
 -­‐	
 Temperature(v2)
	
 	
 val	
 step	
 =	
 1.0f/(length(dP))
	
 	
 Flux(v1)	
 +=	
 dT*step
	
 	
 Flux(v2)	
 -­‐=	
 dT*step
	
 	
 JacobiStep(v1)	
 +=	
 step
	
 	
 JacobiStep(v2)	
 +=	
 step
}
…	

e in
edges(mesh)

head(e) tail(e)

Write Flux, JacobiStep Write Flux, JacobiStep
Read Position,Temperature Read Position, Temperature

vertices(mesh)

Read/Write Flux

Write Temperature
Read/Write JacobiStep

Liszt is constrained to allow dependency analysis
Inferring stencils: (“stencil” = mesh elements accessed in iteration of loop = dependencies for the iteration)

Restrict language for dependency analysis
“Language Restrictions”
- Mesh elements only accessed through built-in topological functions:

	 	 cells(mesh),	
 …
- Single static assignment:

	 	 val	
 v1	
 =	
 head(e)

- Data in Fields can only be accessed using mesh elements:

	
 	
 	
 	
 	
 	
 	
 	
 Pressure(v)

- No recursive functions

Allows compiler to automatically infer stencil

Portable parallelism: use dependencies to implement
different parallel execution strategies
Partitioning
- Assign partition to each computational unit

-Use ghost elements to coordinate cross-
boundary communication.

Coloring
-Calculate interference between work items on domain

- Schedule work-items into non-interfering batches

Owned Cell

Ghost Cell

1 58 1011 73 0 24 9

Batch 4Batch 3Batch 2Batch 1

Schedule set of nonconflicting threads per color

Distribution memory implementation:
Mesh + Stencil -> Graph -> Partition

for(f	
 <-­‐	
 faces(mesh))	
 {
	
 	
 rhoOutside(f)	
 :=	
 	

	
 	
 	
 	
 calc_flux(
 f,rho(outside(f)	
))
	
 	
 	
 	
 +	
 calc_flux(
 f,rho(inside(f)	
))
}

Initial Partition
(by ParMETIS)

Consider distributed memory implementation
Store region of mesh on each node in a cluster
(ParMETIS is a tool to partition meshes)

Ghost
Cells

Each also needs data for neighboring cells to
perform computation (“ghost cells”)
(recall solver example from Textbook)

GPU implementation: parallel reductions

Threads 1 edge assigned to 1 thread

Memory

Force
Field:

1 5 8 10 11730 2 4 6 9

A C E F HGDB

for	
 (e	
 <-­‐	
 edges(mesh))	
 {
	
 	
 …
	
 	
 Flux(v1)	
 +=	
 dT*step
	
 	
 Flux(v2)	
 -­‐=	
 dT*step
	
 	
 …
}

Different edges share a vertex: requires
atomic update of per-vertex !eld data
(Expensive: recall assignment 2)

Previous example, one region of mesh per processor (or node in MPI cluster)
On GPU, natural parallelization is one edge per CUDA thread

GPU implementation: con$ict graph
Threads 1 edge assigned to 1 thread

Memory

Force
Field:

1 5 8 10 11730 2 4 6 9

A C E F HGDB

1 5 8 10

11730

2 4 6 9

Identify mesh edges with colliding writes
(lines in graph indicate presence of collision)

Can run program to get this information.
(results valid provided mesh does not change)

Threads 1 edge assigned to 1 thread

Memory

Force
Field:

1 5 8 10 11730 2 4 6 9

A C E F HGDB

1 5 8 10

11730

2 4 6 9

GPU implementation: con$ict graph

“Color” nodes in graph such that no connected
nodes have the same color

Can execute on GPU in parallel, without atomic
operations, by running all nodes with the same
color in a single CUDA launch.

MPI Performance

256 nodes, 8 cores per node

32

128

256

512

1024

32 128 256 512 1024

Sp
ee

du
p

Cores

Euler
23M cell mesh

Liszt
C++

32

128

256

512

1024

32 128 256 512 1024
Cores

Navier-Stokes
21M cell mesh

Liszt
C++

Important:
Performance portability: same Liszt program also runs with high efficiency on GPU

 (CMU 15-418, Spring 2012)

Liszt summary

▪ Productivity:
- Abstract representation of mesh: vertices, edges, faces, !elds
- Intuitive topological operators

▪ Portability
- Same code runs on cluster of CPUs (MPI runtime) and GPUs

▪ High-Performance
- Language constrained to allow compiler to track dependencies
- Used for locality-aware partitioning in distributed memory implementation
- Used for graph coloring in GPU implementation
- Completely different parallelization strategies for difference platforms
- Underlying mesh representation customized based on usage and platform (e.g,

struct of arrays vs. array of structs)

 (CMU 15-418, Spring 2012)

Many other recent domain-speci!c programming systems

Operations on graphs for machine learningLess domain speci!c than examples given today,
but still designed speci!cally for:
data-parallel computations on big data for
distributed systems (“Map-Reduce”)

Emerging examples in:
Computer vision
Image processing
Statistics/machine learning

Model-view-controller paradigm for
web-applications

 (CMU 15-418, Spring 2012)

Domain-speci!c language development
▪ Stand-alone language

- Graphics shading languages
- MATLAB, SQL

▪ Fully “embedded” in an existing generic language
- e.g., C++ library
- GraphLab, OpenGL host-side API, Map-Reduce

▪ Recent research idea:
- Design generic languages that have facilities that assist embedding of domain-

speci!c languages

 (CMU 15-418, Spring 2012)

Facilitating development of new domain-speci!c languages
“Embed” domain-speci!c language in generic, $exible embedding language

Stand-alone domain-special language must implement everything

Domain language adopts front-end from
highly expressive embedding language

But customizes intermediate representation (IR)
and participates in backend optimization and
code-generation phases (exploiting domain
knowledge while doing so)Leverage techniques like operator overloading,

modern OOP (traits), type inference, closures, to
make embedding language syntax appear native:

Liszt code shown before was actually valid Scala!

“Modular staging” approach:

Credit: Hassan Cha!

 (CMU 15-418, Spring 2012)

Summary
▪ Modern machines: parallel, heterogeneous

- Only way to increase compute capability in power-constrained world

▪ Most software uses very little of peak capability of machine
- Very challenging to tune programs to these machines
- Tuning efforts are not portable across machines

▪ Domain-speci!c programming environments trade-off
generality to achieve productivity, performance, and
portability
- Examples today: OpenGL, Liszt

